首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   8篇
  国内免费   164篇
电工技术   2篇
综合类   1篇
化学工业   4篇
金属工艺   3篇
机械仪表   1篇
建筑科学   1篇
轻工业   4篇
武器工业   1篇
无线电   212篇
一般工业技术   10篇
冶金工业   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   10篇
  2009年   6篇
  2008年   17篇
  2007年   35篇
  2006年   4篇
  2005年   40篇
  2004年   16篇
  2003年   12篇
  2002年   5篇
  2001年   4篇
  2000年   12篇
  1999年   2篇
  1998年   4篇
  1997年   8篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
61.
利用射频等离子体辅助分子束外延技术在蓝宝石衬底上外延了晶体质量较好的单晶InAlGaN薄膜.在生长InAlGaN外延层时,获得了外延膜的二维生长.卢瑟福背散射测量结果表明,InAlGaN外延层中In,Al和Ga的组分分别为2%,22%和76%,并且元素的深度分布比较均匀.InAlGaN(0002)三晶X射线衍射摇摆曲线的半高宽为4.8′.通过原子力显微镜观察外延膜表面存在小山丘状的突起和一些小坑,测量得到外延膜表面的均方根粗糙度为2.2nm.利用光电导谱测量InAlGaN的带隙为3.76eV.  相似文献   
62.
128×128三电极中/长波双色量子阱红外探测器   总被引:1,自引:0,他引:1       下载免费PDF全文
量子阱红外探测器(QWIP)阵列具有重要的实用意义。国外的研究已经相当成熟,但是在国内,量子阱红外探测器阵列的研究水平还较低,尤其是对于双色量子阱红外探测器阵列的研究更是刚刚起步。文中使用GaAs/AlGaAs、InGaAs/AlGaAs应变量子阱和三端电极引出的器件结构研制出128×128中/长波双色量子阱红外探测器阵列。该结构实现了同像元同时引出双色信号。器件像元中心距为40μm,像元有效面积为36μm×36μm。探测器芯片与读出电路互连并完成微杜瓦封装。在65 K条件下测试,峰值波长为:中波5.37μm,长波8.63μm,器件的平均峰值探测率为:中波4.75×109cmHz1/2W-1,长波3.27×109cmHz1/2W-1。并进行了双波段的红外演示成像。  相似文献   
63.
Ⅱ-Ⅵ族材料具有少子寿命对位错不敏感、禁带宽度范围大及成本低等优点,分子束外延(MBE)生长的Si基Ⅱ-Ⅵ族材料可以作为新的材料体系应用于多结太阳电池中,并且开发新型Si基Ⅱ-Ⅵ族多结电池的效率有可能高于目前的Ⅲ-Ⅴ族多结电池。综述了MBE生长的Si基高质量CdTe和CdZnTe单晶薄膜以及对其进行n型和p型掺杂实验的研究进展。着重介绍了美国EPIR公司对以p-Si为衬底的CdZnTe单结电池和CdZnTe/Si双结电池原型器件的研究成果,其光伏转换效率分别达到了16%和17%,分析了研制高效率Si基Ⅱ-Ⅵ族多结电池面临的技术问题和提高电池效率的可能途径。  相似文献   
64.
给出了n型和p型4H-SiC的二级喇曼谱的实验结果.指认了所观察到的一些光谱结构对应的特定声子支及其在布里渊区中相应的对称点.发现在4H-SiC的二级喇曼谱中存在能量差约为10cm-1的双谱线结构,这一结构与六方相GaN,ZnO和AlN的双谱线结构具有相同的能量差.二级喇曼谱的截止频率对于不同掺杂情况的4H-SiC具有相同的值.它并不等于n型掺杂4H-SiC的A1(LO)声子的倍频,而是等于未掺杂样品的A1(LO)声子的倍频.掺杂类型和杂质浓度对4H-SiC的二级喇曼谱几乎没有影响.  相似文献   
65.
对GaAs/Al_xGa_(1-x)As量子阱材料进行的光致发光(PL),横断面透射电子显微镜(XTEM)和反射电子显微镜(REM)的研究结果表明量子阱材料的结构质量对其光电性能有一定影响。另外,也观察到分子束外延对改进异质结界面的平整度有明显作用。  相似文献   
66.
用射频等离子体辅助分子束外延技术( RF- MBE)在c面蓝宝石衬底上外延了高质量的Ga N膜以及Al N/Ga N超晶格结构极化感应二维电子气材料.所获得的掺Si的Ga N膜室温电子浓度为2 .2e1 8cm- 3,相应的电子迁移率为2 2 1cm2 /( V·s) ;1μm厚的Ga N外延膜的( 0 0 0 2 ) X射线衍射摇摆曲线半高宽( FWHM)为7′;极化感应产生的二维电子气室温电子迁移率达到10 86cm2 /( V·s) ,相应的二维电子气面密度为7.5e1 2 cm- 2 .  相似文献   
67.
采用化学气相沉积(CVD)方法进行碳化硅(4H-SiC)同质外延生长,生长过程中温场分布是决定外延层质量的关键因素。对CVD系统的温场分布进行了仿真研究,并采用无偏角4H-SiC衬底进行同质外延生长实验验证。结果表明,无偏角4H-SiC外延层中的3C-SiC多型体夹杂与生长室温场分布密切相关。实验数据验证了仿真结果,两者的温度分布具有高度一致性,这也证明了仿真数据的有效性。  相似文献   
68.
Gallium nitride (GaN) based light emitting diodes (LEDs) with a thick and high quality ZnO film as a current spreading layer grown by metal-source vapor phase epitaxy (MVPE) are fabricated successfully. Compared with GaN-based LEDs employing a Ni/Au or an indium tin oxide transparent current spreading layer, these LEDs show an enhancement of the external quantum efficiency of 93% and 35% at a forward current of 20 mA, respectively. The full width at half maximum of the ZnO (002) ω-scan rocking curve is 93 arcsec, which corresponds to a high crystal quality of the ZnO film. Optical microscopy and atomic force microscopy are used to observe the surface morphology of the ZnO film, and many regular hexagonal features are found. A spectrophotometer is used to study the different absorption properties between the ZnO film and the indium tin oxide film of the GaN LED. The mechanisms of the extraction quantum efficiency increase and the series resistance change of the GaN-based LEDs with ZnO transparent current spreading layers are analyzed.  相似文献   
69.
利用LPCVD方法,在厚表层Si(SOL≈0.5μm)柔性绝缘衬底(SOI)(001)上外延生长出了可与硅衬底上外延晶体质量相比拟的SiC/SOI,表明SOI是一种很有潜力的柔性衬底.Raman光谱结果表明SiC/SOI外延层比SiC/Si外延层有更大的残存应力,对此从理论上进行了解释.利用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)和喇曼散射光谱(RAM)技术研究了外延材料的晶体结构、界面性质和应变情况  相似文献   
70.
制备了4种具有不同光窗口台面结构的4H-SiC紫外探测器#1,#2,#3和#4,并分别测试它们的紫外光响应谱.器件制备在4H-SiC同质外延层上,台面为垂直结构,其中探测器#1光窗口区由透明Pt层、p 层、p层、n层和n 衬底组成.在探测器#1的基础上用离子刻蚀的方法分别剥离透明Pt层、透明Pt层和p 层、透明Pt层和层以及p层制备出探测器#2,#3和#4.器件的紫外光响应谱表明,紫外响应率最好的是探测器#2,其次是探测器#4,#1,#3,其中探测器#2比其他类型的探测器响应率高1个数量级;4种类型的探测器峰值响应位置各不相同,其中探测器#1位于341nm处,探测器#2,#3和#4分别在312,305和297nm处.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号