排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
12.
本文基于多传感器设计了多功能门控制系统,用于智能家居监控。当其周围突发火灾,或是发生煤气等有害气体泄漏时,根据门板上的液晶显示器显示实时室温或是烟雾浓度可电动开、关门并电话报警以便主人监听室内现场情况,做出及时准确的处理,达到防患于未然的目的。 相似文献
13.
使用机器学习方法分类f MRI(functional magnetic resonance imaging)数据已经逐渐广泛被应用到探索大脑认知的研究中。在探索人脑视觉区域对颜色特征和形状特征的捆绑图像认知研究中,使用血氧含量水平BOLD(blood oxygen level dependent)最大值、BOLD变化累计值作为特征值训练SVM分类器,使用BOLD变化时间序列方差及均值组合作为特征值训练多个SVM弱分类器,并使用Adaboost算法将多个SVM分类器集成到一起构造集成分类器,以此来判断人正在观察的图像的类型。实验结果表明,使用BOLD时间序列方差及均值组合作为特征构造的集成分类器分类正确率较高,对比不同视觉区域对特征捆绑任务识别正确率,发现V3区对图像复杂度的改变比较敏感,与特征捆绑的任务联系比较紧密。该方法可以应用到脑机接口BCI(brain computer interface)等领域。 相似文献
14.
15.
针对大规模姿态变化和大角度人脸平面旋转(Rotation-in-Plane, RIP)等复杂条件下,多尺度旋转人脸检测精度低的问题,提出了一种基于汇聚级联卷积神经网络(Convolutional Neural Networks, CNN)的旋转人脸检测方法。采用由粗到精的级联策略,在主网络SSD的多个特征层上汇聚级联了多个浅层的卷积神经网络,逐步完成人脸/非人脸检测、人脸边界框位置更新和人脸RIP角度估计。该方法在Rotate FDDB和Rotate Sub-WIDER FACE数据集上取得了较好的检测效果。在Rotate Sub-WIDER FACE数据集出现100次误报时的检测精度为87.1%,速度为45 FPS,证明该方法可在低时间损耗下完成精确的旋转人脸检测。 相似文献
16.
针对fM RI数据信噪比低、数据量大的特点,将Pearson分布族应用于独立成分分析算法中,提出基于Pearson系统的独立成分分析算法。增加非线性函数生成器,改进调整步长的方法,能根据观测数据自适应地估计非线性函数。改进的算法与原ICA算法相比,运行速度时间缩短,在fM RI信号分离中取得了较好的效果。将该算法应用于颜色和形状的特征捆绑认知中,得出参与捆绑认知的各大脑区域的主要作用,为建立视觉特征捆绑的认知模型提供理论基础。 相似文献
17.
针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模型的数据增广方法,构建样本量为23 327的数据集,达到91.37%的检测mAP。实验结果表明,提出模型满足输电线路多目标识别和故障检测的鲁棒性和准确性要求。 相似文献
18.
摘要: 准确测量出故障点的位置是系统保护能正确操作的前提,但对于经过过渡电阻接地的故障,依靠传统的方法很难准确测出故障距离。而且在超/特高压输电线路中,由于分布电容不能忽略,这增加了故障测距的难度。分析了过渡电阻对距离保护的影响,进而提出了一种利用分布电容引起的自由振荡主频频率的大小实现故障测距的方法。通过PSCAD/EMTDC仿真结果验证了新方法的有效性。 相似文献