排序方式: 共有28条查询结果,搜索用时 0 毫秒
21.
以4,4-二苯醚二甲酸(OBBA)、丁二酸(SA)和1,4-丁二醇(BDO)为原料,以钛酸四丁酯(TBOT)为催化剂,采用先酯化后缩聚的两步聚合法制备了一系列聚(丁二酸丁二醇-co-二苯醚二甲酸丁二醇)酯(PBSO),研究了二元酸单体SA与OBBA的摩尔比(10∶0、9∶1、7∶3、5∶5、3∶7、1∶9、0∶10)对聚酯的结构、热性能、流变性能和力学性能的影响。红外光谱和核磁共振氢谱分析表明成功地制备了脂肪族-芳香族共聚酯,M_w在22070~43530之间,多分散性指数(PDI)在2.0左右。差示扫描量热分析和X射线衍射结果表明PBS和PBSO(9∶1)为结晶聚合物,结晶度分别为43%和24%,其它共聚酯均为无定形聚合物。随着共聚酯中OBBA单体含量的增加,共聚酯的T_g逐渐升高。热重分析结果表明共聚酯初始分解温度均高于275℃。流变性能分析表明,共聚酯均属于典型的假塑性流体,其中,PBSO(5∶5)的黏度对剪切具有较高的敏感性。拉伸测试结果表明,随着OBBA单体含量增加,聚酯拉伸强度先下降后上升,断裂伸长率先增加后降低。其中,PBSO(5∶5)的拉伸强度为1.2 MPa,断裂伸长率最大为1523.2%,表现出良好的韧性,且循环拉伸测试表明PBSO(5∶5)的拉伸永久变形在10~30℃内对温度具有敏感性。 相似文献
22.
将自制含磷木质素基成炭剂(Lig-P)和聚磷酸铵(APP)复配用于制备阻燃聚乳酸(PLA)基复合材料,考察了协效阻燃剂有机蒙脱土(OMMT)对阻燃PLA性能的影响。采用极限氧指数(LOI)仪、垂直燃烧(UL-94)测试仪、锥形量热仪、热失重分析仪分别对Lig-P-APP-OMMT/PLA阻燃复合材料的阻燃性能、热稳定性能和燃烧行为进行了研究。结果发现,OMMT与Lig-P-APP存在明显的协同阻燃作用,当OMMT替代3wt%的Lig-P-APP时,Lig-P-APP-OMMT/PLA阻燃复合材料的LOI由27%增加至32%,UL-94等级由V1级提高至V0级;且Lig-P-APP-OMMT/PLA阻燃复合材料的最大热降解速率有所降低,800℃的残炭量提高了将近50%;此外,OMMT的引入使PLA阻燃复合材料的热释放速率明显降低,热释放速率峰值(PHRR)、烟释放速率峰值(PSPR)及总烟释放量(TSR)分别降低了26.4%、60%及26.3%。OMMT可明显提高阻燃PLA炭层的致密度及石墨化程度。 相似文献
23.
采用热失重、极限氧指数、锥形量热研究了以受阻胺(NOR116)和分子筛为协效剂,与聚磷酸铵(APP)/季戊四醇(PER)在聚丙烯基体中的热降解行为及协同阻燃性;并用拉曼光谱和扫描电镜分析了残炭的结构和形貌,进一步研究了其协同阻燃机理。结果表明,NOR116/分子筛协效阻燃体系可明显提高极限氧指数并改善燃烧时熔滴缺陷,显著降低热释放速率、烟释放速率;NOR116可有效提高PP的初始分解温度及最大分解速率温度,使膨胀阻燃体系后期的交联成炭及气体释放更加匹配;在燃烧过程中分子筛与膨胀阻燃体系形成了Si-P-Al-C的结构,可有效稳定炭层;拉曼光谱及扫描电镜结果表明,NOR116和分子筛可促进膨胀阻燃体系形成致密且高石墨化程度的炭层,有效阻隔了氧气的进入及热的反馈。 相似文献
24.
将水性聚氨酯(WBPU)乳液与聚乙烯醇(PVA)溶液共混制备了WBPU/PVA复合材料。通过FTIR、透光率、AFM、拉伸测试、吸水率、TG等表征方法研究了材料的相容性以及PVA含量对复合材料的力学性能、耐水性和热性能的影响。实验结果表明,WBPU与PVA间存在分子间氢键作用;当PVA含量为80%时,两组分具有相对较高的相容性,且此时复合材料具有最大的拉伸强度61.9 MPa,相对于WBPU(24.9 MPa)和PVA(44.7 MPa)分别提高了149%和38%;随着PVA含量的增加,复合材料的断裂伸长率和耐水性呈现降低的趋势。 相似文献
25.
以己二酸(AA)、对苯二甲酸(PTA)和1,4-丁二醇(BDO)为原料,钛酸四丁酯为催化剂,采用先酯化后缩聚的两步聚合法制备了一系列聚(己二酸/对苯二甲酸丁二醇)(PBAT)共聚酯。研究己二酸与对苯二甲酸不同摩尔比对合成共聚酯的结构、热性能和弹性性能的影响。FTIR和NMR测试结果表明本实验成功合成了PBAT共聚酯。GPC测试结果表明共聚酯的重均分子量(Mw)在41000~142000之间,测试结果与特性黏度具有一致性。DSC测试结果表明随己二酸含量的增加,共聚酯的熔融温度和结晶温度逐渐降低;WXRD测试结果表明随着己二酸含量的不断增加,共聚酯的晶型结构逐渐由PBA转变为PBT;DMA结果表明玻璃化转变温度(Tg)基本呈不断降低的趋势;TGA结果表明PBAT共聚酯的初始分解温度随对苯二甲酸含量的增加向高温区移动,而在高温段共聚酯的热稳定性接近。拉伸结果表明,AA/PTA比例的变化显著影响共聚酯的力学弹性,PBAT7:3具有最大的断裂伸长率,而PBAT3:7则表现为强而韧的拉伸特性。 相似文献
26.
27.
以六氯环三磷腈、对羟基苯甲醛及γ-氨丙基硅烷三醇(KH553)为反应原料,合成了具有席夫碱结构的有机硅型成炭剂六(γ-氨丙基硅烷三醇)环三磷腈(HKHPCP)。以HKHPCP与聚磷酸铵(APP)的复配物为抗熔滴剂,以N-烷氧基受阻胺(NOR116)为阻燃协效剂,通过熔融共混技术制备了膨胀阻燃聚丙烯(PP)基复合材料(APP-HKHPCP-NOR116/PP)。利用FTIR、核磁共振(1 H和31P NMR)对HKHPCP的化学结构进行了表征。采用热失重、极限氧指数、垂直燃烧、锥形量热、拉曼光谱和SEM研究了阻燃体系的热降解行为、阻燃性能及炭层的石墨化程度和致密性。HKHPCP的热失重结果表明,其在氧气氛围下的初始分解温度为300.2℃,1 000℃时残余率为34.8%。当添加总量为30wt%的阻燃剂时,APP-HKHPCP-NOR116/PP复合材料的极限氧指数(LOI)达到43%,且能通过UL-94V-0级,其热释放速率(HRR)、总热释放速率(THR)及烟释放速率(SPR)、总烟释放量(TSP)相比于纯PP分别降低了75.0%、50.5%和88.0%、80.8%,表现出显著的隔热、抑烟性能。APPHKHPCP-NOR116/PP复合材料燃烧后形成了高石墨化、致密的炭层。 相似文献
28.
以高光学纯度右旋乳酸(D-LA)为单体合成了不同相对分子质量的右旋聚乳酸(PDLA),采用熔融共混法制备了工业级聚乳酸(PLA)/PDLA共混物。采用热变形温度测试、X射线衍射(XRD)和差示扫描量热(DSC)分别研究了PDLA含量和相对分子质量对PLA/PDLA共混物维卡软化温度(VST)、晶体类型和结晶及熔融行为的影响。结果表明,随着PDLA的加入,PLA的VST从64.6℃上升到最高152.3℃,且PDLA相对分子质量越小,PLA/PDLA共混物VST越高;XRD和DSC的结果均表明工业PLA与PDLA在熔融共混可形成立构复合晶体(SC),且极速冷却的共混物中不含PLA同质晶体(HC),说明PLA/PDLA共混物VST上升主要是由于SC晶体含量上升所导致;DSC研究发现,加入10%PDLA时,PLA/PDLA共混物的结晶温度(Tc)从95.9℃提高到133.4℃,表明了SC晶体是PLA的有效成核剂。 相似文献