首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   5篇
电工技术   5篇
化学工业   18篇
金属工艺   3篇
机械仪表   3篇
建筑科学   1篇
能源动力   2篇
轻工业   3篇
无线电   2篇
一般工业技术   25篇
冶金工业   1篇
原子能技术   6篇
自动化技术   4篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   7篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2003年   3篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
21.
The electronic structures of undoped c - and t -ZrO2 were calculated by a first-principles molecular orbital method. A preliminary analysis revealed that experimental energy-loss near-edge structure profiles obtained in ZrO2–8 mol% Y2O3 could be satisfactorily explained from the present theoretical calculation. The calculation suggests that the stability of t -ZrO2 could be described by the interaction between neighboring oxygen ions rather than the covalency of Zr—O bonds. The effect of dopant cations on the stability of cubic-zirconia solid solutions can be estimated semiquantitatively in terms of the repulsive Coulomb force between neighboring oxygen ions.  相似文献   
22.
23.
This paper presents a critical review of current understanding of the effect of hydrogen on fracture and fatigue of metals and alloys. First, microstructures found immediately beneath hydrogen-induced fracture surfaces in various materials are presented. Then, recent progress toward the fundamentals of hydrogen-induced fracture is reported. Lastly, a recent attempt to model hydrogen embrittlement by linking the macroscale (e.g. applied load and hydrogen content) and the operating microscopic degradation mechanism at the local microstructural defect level is reviewed.  相似文献   
24.
The tests on fission product (FP) behavior in piping under severe accidents are being conducted in the wide range piping integrity demonstration (WIND) project at JAERI to investigate the piping integrity which may be threatened by decay heat from deposited FPs. In order to obtain the background information for future WIND experiment and to confirm analytical capabilities of the FP aerosol analysis codes, ART and VICTORIA, the FP behavior in safety relief valve (SRV) line of BWR during TQUX sequence was analyzed. The analyses showed that the mechanisms that control the FP deposition and transport agreed well between the two codes. However, the differences in models such as diffusiophoresis or turbulence, the treatment of chemical forms and aerosol mass distribution could affect the deposition in piping and, consequently, on the source terms. The WIND experimental analyses were also conducted with a three-dimensional fluiddynamic WINDFLOW, ART and an interface module to appropriately couple the fluiddynamics and FP behavior analyses. The analyses showed that the major deposition mechanism for cesium iodide (CsI) is thermophoresis which depends on the thermal gradient in gas. Accordingly, the coupling analyses were found to be essential to accurately predict the CsI deposition in piping, to which little attention has been paid in the previous studies.  相似文献   
25.
An ultrasensitive and nonlabeled detection method of nonfluorescent molecules on a microchip was developed by realizing a thermal lens microscope (TLM) with a 266-nm UV pulsed laser as an excitation light source (UV-TLM). Pulsed laser sources have advantages over continuous-wave laser sources in more compact size and better wavelength tuning, which are important for microchip-based analytical systems. Their disadvantage is difficulty in applying a lock-in amplifier due to the high (>10(4)) duty ratio of pulse oscillation. To overcome this problem, we realized a quasi-continuous-wave excitation by modulating the pulse trains at approximately 1 kHz and detecting the synchronous signal with a lock-in amplifier. The optimum pulse repetition frequency was obtained at 80 kHz, which was reasonable considering thermal equilibrium time. Furthermore, a permissible flow velocity in the range of 6.6-19.8 mm/s was found to avoid sensitivity decrease due to photochemical reactions and thermal energy dissipation. Under these conditions, we detected adenine aqueous solutions on a fused-silica microchip without labeling and obtained a sensitivity that was 350 times higher than that in a spectrophotometric method. The sensitivity was enough for detection on a microchip with an optical path length that was 2-3 orders shorter than that in conventional cuvettes. Finally, the UV-TLM method was applied to liquid chromatography detection. Fluorene and pyrene were separated in a microcolumn and detected in a capillary (50-microm inner diameter) with 150 times higher sensitivity than a spectrophotometric method. Our method provides highly sensitive and widely applicable detections for various analytical procedures and chemical syntheses on microchips.  相似文献   
26.
A new design and construction methodology for integration of complicated chemical processing on a microchip was proposed. This methodology, continuous-flow chemical processing (CFCP), is based on a combination of microunit operations (MUOs) and a multiphase flow network. Chemical operations in microchannels, such as mixing, reaction, and extraction, were classified into several MUOs. The complete procedure for Co(II) wet analysis, including a chelating reaction, solvent extraction, and purification was decomposed into MUOs and reconstructed as CFCP on a microchip. Chemical reaction and molecular transport were realized in and between continuous liquid flows in a multiphase flow network, such as aqueous/aqueous, aqueous/organic, and aqueous/organic/aqueous flows. When the determination of Co(II) in an admixture of Cu(II) was carried out using this methodology, the determination limit (2sigma) was obtained as 18 nM, and the absolute amount of Co chelates detected was 0.13 zmol, that is, 78 chelates. The sample analysis time was faster than that of a conventional processing system. Moreover, troublesome operations such as phase separation and acid and alkali washing, all necessary for the conventional system, were simplified. The CFCP methodology proposed here can be applied to various on-chip applications.  相似文献   
27.
An electrochemical measurement system with a high-speed camera for observation of dynamic behavior of ionic molecules at a water-in-oil interface during microfluidic droplet formation is described. In order to demonstrate the usefulness of the system, a liquid interface between 1 M sodium chloride aqueous solution and 0.02 M tetrabutylammonium tetraphenylborate 1,2-dichloroethane solution was investigated. During aqueous droplet formation in a microfluidic device, averaged and dynamic currents between the two phases were measured under potential control. The measured current corresponded to the transport of electrolyte ions to form the electrical double layer at the liquid interface. When an 18-μm-sized droplet was formed in each 1.2 ms, the amount of charge on each droplet was measured to be 20 pC at 0.4 V and negligible at the potential of zero charge (0.19 V). In addition, the high-speed camera observations revealed that the charge affects the stability of the droplet during and/or just after the generation process. This measurement system is expected to facilitate a fuller understanding of the droplet formation process.  相似文献   
28.
We demonstrated a liquid/liquid and a gas/liquid two-phase crossing flow in glass microchips. A 250-microm-wide microchannel for aqueous-phase flow was fabricated on a top glass plate. Then, as a way to utilize the surface energy difference for stable phase confluence and separation, a 250-microm-wide microchannel for organic-phase (or gas-phase) flow was fabricated on a bottom glass plate and the wall was chemically modified by octadecylsilane (ODS) group. The top and bottom plates were sealed only by pressure. A microchannel pattern was designed so that the two phases made contact at the crossing point of the straight microchannels. The crossing point was observed with an optical microscope. Results showed that the ODS modification of the microchannel wall clearly improved stability of the interface between the two fluids. Pressure difference between fluids was measured and the interface of water and nitrobenzene was stable for the pressure difference from +300 Pa to -200 Pa. The pressure drop in a countercurrent flow configuration was also estimated, and the pressure difference required to realize the counter current flow was less than the allowable pressure range. Finally, we discussed the advantages of utilizing this approach.  相似文献   
29.
The addition of glass phase can control the grain boundary structure and hence the mechanical properties of tetragonal zirconia polycrystals (TZP). To reveal the effect of the glass dopant on the high-temperature deformation behavior of TZP, SiO2-doped TZP, (SiO2—Al2O3)-doped TZP, (SiO2—MgO)-doped TZP and undoped TZP were prepared and their grain boundary structure, chemical composition and chemical bonding state were investigated by high resolution electron microscopy ,HREM), energy dispersive X-ray spectroscopy ,EDS) and electron energy loss spectroscopy (EELS) using a field-emission-type transmission electron microscope (FE-TEM). It was found that no amorphous film was formed along the grain boundaries in any of the specimens examined, but amorphous pockets formed at multiple grain boundary junctions in three kinds of glass-doped specimens. In the glass-doped specimens, the segregation of yttrium, silicon and the added metal ions (Al31 or Mg21) was observed over a width of several nm across the grain boundaries. The addition of pure SiO2 much enhanced the ductility in TZP, although further addition of a small amount of Al2O3 or MgO to SiO2 phase resulted in a marked reduction in the tensile ductility of SiO2-doped TZP. EELS measurements and molecular orbital (MO) calculations using a cluster model revealed that the ductility of TZP was related to the bond overlap population (BOP) at the grain boundaries, which was influenced by the kinds of segregated dopants. That is, the presence of Si41 increases the BOP, strengthening the grain boundary bonding strength and thus preventing cavity formation, but Al31 and Mg21 decrease the BOP, enhancing the grain boundary cavitation and thus reducing the ductility. Furthermore, the dynamic behavior of SiO2 in TZP was observed using a TEM in situ heating technique, and the results supported the fact that that Si segregates along the grain boundaries.  相似文献   
30.
The properties of fluid interfaces increase in importance as the physical scale decreases and, hence, characterization of surface tension becomes all the more critical. However, there is to date no method to characterize this parameter on microscale surfaces. We propose here a simple method based on the resonance of capillary waves, which are naturally excited by thermal fluctuations, under one-dimensional spatial restrictions using single-beam dynamic light scattering. The principle was verified at methanol/air interfaces in polydimethylsiloxane (PDMS) microchannels having various widths. Characteristic comb-shape power spectra were experimentally obtained. Theoretical analysis showed that the spectral peaks correspond to the first or higher modes of the capillary wave resonance in the restricted space between the parallel channel walls. A useful relation between successive modes was derived to eliminate the effects of damping at the soft PDMS walls. Thus, for methanol, two values were calculated from three successive modes (24.8 and 21.2 mN/m); the literature value is 22.02 mN/m. For acetonitrile, the value obtained was 28.2 ± 5 mN/m, close to the literature value of 28.6 mN/m. Although accuracy and precision require further elucidation, this novel method is expected to become a powerful tool at the micro/nanoscale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号