首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9583篇
  免费   489篇
  国内免费   20篇
电工技术   96篇
综合类   4篇
化学工业   1928篇
金属工艺   140篇
机械仪表   188篇
建筑科学   614篇
矿业工程   21篇
能源动力   318篇
轻工业   909篇
水利工程   107篇
石油天然气   27篇
无线电   696篇
一般工业技术   1955篇
冶金工业   1271篇
原子能技术   43篇
自动化技术   1775篇
  2023年   65篇
  2022年   107篇
  2021年   216篇
  2020年   175篇
  2019年   210篇
  2018年   232篇
  2017年   232篇
  2016年   254篇
  2015年   226篇
  2014年   334篇
  2013年   659篇
  2012年   556篇
  2011年   790篇
  2010年   501篇
  2009年   474篇
  2008年   587篇
  2007年   511篇
  2006年   435篇
  2005年   387篇
  2004年   329篇
  2003年   308篇
  2002年   277篇
  2001年   146篇
  2000年   157篇
  1999年   134篇
  1998年   147篇
  1997年   150篇
  1996年   134篇
  1995年   115篇
  1994年   89篇
  1993年   87篇
  1992年   79篇
  1991年   62篇
  1990年   76篇
  1989年   61篇
  1988年   42篇
  1987年   60篇
  1986年   52篇
  1985年   56篇
  1984年   53篇
  1983年   67篇
  1982年   50篇
  1981年   40篇
  1980年   36篇
  1979年   38篇
  1978年   29篇
  1977年   27篇
  1976年   23篇
  1975年   23篇
  1912年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Since the 1950s, 8.3 billion tonnes (Bt) of virgin plastics have been produced, of which around 5 Bt have accumulated as waste in oceans and other natural environments, posing severe threats to entire ecosystems. The need for sustainable bio-based alternatives to traditional petroleum-derived plastics is evident. Bioplastics produced from unprocessed biological materials have thus far suffered from heterogeneous and non-cohesive morphologies, which lead to weak mechanical properties and lack of processability, hindering their industrial integration. Here, a fast, simple, and scalable process is presented to transform raw microalgae into a self-bonded, recyclable, and backyard-compostable bioplastic with attractive mechanical properties surpassing those of other biobased plastics such as thermoplastic starch. Upon hot-pressing, the abundant and photosynthetic algae spirulina forms cohesive bioplastics with flexural modulus and strength in the range 3–5 GPa and 25.5–57 MPa, respectively, depending on pre-processing conditions and the addition of nanofillers. The machinability of these bioplastics, along with self-extinguishing properties, make them promising candidates for consumer plastics. Mechanical recycling and fast biodegradation in soil are demonstrated as end-of-life options. Finally, the environmental impacts are discussed in terms of global warming potential, highlighting the benefits of using a carbon-negative feedstock such as spirulina to fabricate plastics.  相似文献   
172.
The Journal of Supercomputing - Adaptive Cartesian mesh approaches have proven useful for multi-scale applications where particular features can be finely resolved within a large solution domain....  相似文献   
173.
Journal of Intelligent Manufacturing - In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size,...  相似文献   
174.
175.
A common cause of local tumor recurrence in brain tumor surgery results from incomplete surgical resection. Adjunctive technologies meant to facilitate gross total resection have had limited efficacy to date. Contrast agents used to delineate tumors preoperatively cannot be easily or accurately used in the real‐time operative setting. Although multimodal imaging contrast agents are developed to help the surgeon discern tumor from normal tissue in the operating room, these contrast agents are not readily translatable. This study has developed a novel contrast agent comprised solely of two Food and Drug Administration approved components, indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) nanoparticles—with no additional amphiphiles or carrier materials, to enable preoperative detection by magnetic resonance (MR) imaging and intraoperative photoacoustic (PA) imaging. The encapsulation efficiency of both ICG and SPIO within the formulated clusters is ≈100%, and the total ICG payload is 20–30% of the total weight (ICG + SPIO). The ICG–SPIO clusters are stable in physiologic conditions; can be taken up within tumors by enhanced permeability and retention; and are detectable by MR. In a preclinical surgical resection model in mice, following injection of ICG–SPIO clusters, animals undergoing PA‐guided surgery demonstrate increased progression‐free survival compared to animals undergoing microscopic surgery.  相似文献   
176.
177.
Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction (\(\mathit{Vf}\)) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of \(\mathit{Vf}\) were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.  相似文献   
178.
179.
The isolation of T cells, followed by differentiation into Regulatory T cells (Tregs), and re‐transplantation into the body has been proposed as a therapeutic option for inflammatory bowel disease. A key requirement for making this a viable therapeutic option is the generation of a large population of Tregs. However, cytokines in the local microenvironment can impact the yield of Tregs during differentiation. As such, experimental design is an essential part of evaluating the importance of different cytokine concentrations for Treg differentiation. However, currently only single, constant concentrations of the cytokines have been investigated. This work addresses this point by performing experimental design in silico which seeks to maximize the predicted induction of Tregs relative to Th17 cells, by selecting an optimal input function for the concentrations of TGF‐β, IL‐2, IL‐6, and IL‐23. While this approach sounds promising, the results show that only marginal improvements in the concentration of Tregs can be achieved for dynamic cytokine profiles as compared to optimal constant concentrations. Since constant concentrations are easier to implement in experiments, it is recommended for this particular system to keep the concentrations constant where IL‐6 should be kept low and high concentrations of TGF‐β, IL‐2, and IL‐23 should be used.Inspec keywords: patient treatment, molecular biophysics, proteins, cellular biophysics, diseasesOther keywords: Tregs relative, optimal input function, dynamic cytokine profiles, optimal constant concentrations, IL‐23, computational maximisation, regulatory T‐cell induction, inflammatory bowel disease, viable therapeutic option, local microenvironment, Treg differentiation, single concentrations, predicted induction, dynamic optimal experimental design, interleukin‐2, IL‐6, transforming growth factor‐β  相似文献   
180.
Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nucleic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the “inverse molecular sentinel” detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the “tissue optical window”, rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this study, a new core–shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号