首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3785篇
  免费   205篇
  国内免费   22篇
电工技术   60篇
综合类   8篇
化学工业   1105篇
金属工艺   84篇
机械仪表   105篇
建筑科学   87篇
矿业工程   8篇
能源动力   268篇
轻工业   320篇
水利工程   39篇
石油天然气   51篇
无线电   380篇
一般工业技术   664篇
冶金工业   192篇
原子能技术   39篇
自动化技术   602篇
  2024年   7篇
  2023年   61篇
  2022年   181篇
  2021年   208篇
  2020年   177篇
  2019年   194篇
  2018年   248篇
  2017年   200篇
  2016年   230篇
  2015年   149篇
  2014年   188篇
  2013年   372篇
  2012年   200篇
  2011年   234篇
  2010年   174篇
  2009年   153篇
  2008年   124篇
  2007年   80篇
  2006年   98篇
  2005年   58篇
  2004年   56篇
  2003年   46篇
  2002年   52篇
  2001年   28篇
  2000年   29篇
  1999年   17篇
  1998年   65篇
  1997年   38篇
  1996年   41篇
  1995年   28篇
  1994年   27篇
  1993年   26篇
  1992年   25篇
  1991年   18篇
  1990年   14篇
  1989年   18篇
  1988年   13篇
  1987年   13篇
  1986年   6篇
  1985年   12篇
  1984年   10篇
  1983年   9篇
  1982年   8篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1976年   13篇
  1971年   4篇
排序方式: 共有4012条查询结果,搜索用时 0 毫秒
191.
The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer.  相似文献   
192.
Horseradish peroxidase (HRP) and glucose oxidase (GOx) were co-immobilized on polyurethane, and the resulting HRP/GOx/polyurethane biocatalyst was characterized using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDAX) mapping techniques. The prepared biocatalyst was used for removal of acid orange 7 as model azo dye. The required H2O2 for activation of HRP was in-situ produced using GOx to prevent deactivation of HRP in the presence of excess chemical H2O2. Central composite design (CCD) was applied for modeling and optimization of parameters affecting the activity of prepared biocatalyst. Under the optimum conditions, removal efficiency of the azo dye was predicted to be 87.47%, which was in good agreement with the experimental value (89.69%). In addition, the performance of the prepared biocatalyst for removal of two other dyes with different structure was investigated at the optimum conditions, and a removal efficiency of 91.56% and 95.25% was obtained for removal of methylene blue and malachite green, respectively. The results demonstrated that the resultant HRP/GOx/Polyurethane biocatalyst was able to decrease the chemical oxygen demand (COD) of a textile effluent from 740mg/L to 96mg/L, indicating that the prepared biocatalyst is an effective enzymatic system for treatment of real wastewater.  相似文献   
193.
194.
This paper deals with influence of chitosan nanoparticles (CNPs) loaded by tetracycline, as a drug, on the physico-mechanical and antibacterial properties as well as drug release behavior of poly(vinyl alcohol), PVA, hydrogels prepared by electron beam irradiation. The formation of spherical chitosan particles in nanoscale size prepared by an ionic gelation method was confirmed by FTIR and UV spectroscopy, and scanning electron microscopy analyses. The drug release kinetic studies from drug loaded chitosan nanoparticles (DLCNPs) at pH = 7.4 revealed a linear and steady release behavior over long period of time. The theoretical analysis of the swelling kinetic data, using Peppas’s model showed that the swelling kinetic is governed by Fickian diffusion for all the prepared hydrogels, however, the water diffusion coefficient, and therefore, the swelling content were lower for the hydrogels loaded with DLCNPs as compared to the ones with the neat drug. In agreement with these results, the hydrogels containing DLCNPs exhibited a more controlled drug release behavior with significantly stronger antibacterial activity. The tensile mechanical properties of the hydrogels not affected by the DLCNPs were found to be suitable for wound dressing applications.  相似文献   
195.
196.
197.
Energy harvesting is the process of attaining energy from the external sources and transforming it into usable electrical energy. An analytical model of piezoelectric energy harvester has been developed to determine the output voltage across an electrical circuit when it is forced to undergo a base excitation. This model gives an easy approach to design and investigate the behavior of piezoelectric material. Numerical simulations have been carried out to determine the effect of frequency and loading on a Lead zirconate titanate (PZT-5A) piezoelectric material. It has been observed that the output voltage from the harvester increases when loading increases whereas its resonance frequency decreases. The analytical results were found to be in good agreement with the experimental and numerical simulation results.  相似文献   
198.
The forming limit diagram (FLD) is a useful method for characterizing the formability of sheet metals. In this article, different numerical models were used to investigate the FLD of tailor-welded blank (TWB). TWBs were CO2 laser-welded samples of interstitial-free (IF) steel sheets with difference in thickness. The results of the numerical models were compared with the experimental FLD as well as with the empirical model proposed by the North American Deep Drawing Research Group. The emphasis of this investigation is to determine the performance of these different approaches in predicting the FLD. These numerical models for FLD are: second derivative of thinning (SDT), effective strain rate (ESR), major strain rate (MSR), thickness strain rate (TSR), and thickness gradient (TG). Results of this research show necking will be happened, when the value of MSR, TSR, ESR criteria is maximum, TG????0.78 and SDT criterion has the first peak in forming process time. The value of dome height of TWB samples at failure was predicted based on the numerical models for samples with different widths. These numerical predictions were compared with the experimental results. The SDT model indicates a better agreement with experimental results in prediction of both the FLD and the limit dome height (LDH) in comparison to the other numerical models. Both numerical and experimental results show that minimum of LDH is happened in plane strain condition.  相似文献   
199.
Self-conditioning performance of polishing pad is an important characteristic to influence processing efficiency and service life in chemical mechanical polishing (CMP). The slurry can react with the pad surface, which affects its self-conditioning performance in fixed abrasive polishing process. Wear ratio of wafer material removal rate (MRR) and pad wear rate is introduced to evaluate self-conditioning performance of fixed abrasive pad (FAP). To clear the effect of chemical additive on FAP self-conditioning, wear ratio, FAP surface topography, friction coefficient, and acoustic emission signal of polishing process were investigated in fixed abrasive polishing of quartz glass with ferric nitrate, ethylenediamine (EDA), and triethanolamine (TEA) slurry, respectively. Results indicate that TEA slurry can provide excellent self-conditioning of FAP in fixed abrasive polishing of quartz glass. MRR and wear ratio maintain high levels during the whole polishing process. Friction coefficient and acoustic emission signal are more stable than that of the other two chemical additives. An appropriate amount of TEA, which is beneficial to enhance MRR and extends service life of FAP, is added in the polishing slurry to improve FAP self-conditioning in fixed abrasive polishing process.  相似文献   
200.
Semi-crystalline thermoplastic-based composite laminates and fiber metal laminates have a narrow forming temperature window, which limits formability of these products. The intention of this study was investigation of non-melting amorphous polyvinyl chloride as a proper matrix to increase the formability and forming temperature window of these products. For this, [45/?45] and [0/90] layups of polyvinyl chloride-based composite laminates and fiber metal laminates were produced using the film-stacking procedure and later press formed into channel sections at six temperatures in the range of 80 to 200 °C. The effects of the layups and forming temperatures on the forming loads and spring back of the formed profiles were measured, and their effects on the fiber buckling, wrinkling, and delamination of the profiles were evaluated using optical microscope images. The effects of layups and forming temperatures on the deformation mechanisms were also analyzed using the grid strain analysis method. Of the fiber metal laminates, 160 °C was found as the minimum forming temperature, and for the composite laminates, 120 and 160 °C were found as the minimum proper forming temperatures of [45/?45] and [0/90] layups, respectively. Finally, the forming temperature windows and formability of polyvinyl chloride matrix composite laminates and fiber metal laminates were found higher than semi-crystalline matrices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号