全文获取类型
收费全文 | 93253篇 |
免费 | 8820篇 |
国内免费 | 4253篇 |
专业分类
电工技术 | 6117篇 |
技术理论 | 4篇 |
综合类 | 6386篇 |
化学工业 | 14800篇 |
金属工艺 | 5326篇 |
机械仪表 | 6326篇 |
建筑科学 | 6988篇 |
矿业工程 | 2469篇 |
能源动力 | 2785篇 |
轻工业 | 6742篇 |
水利工程 | 1845篇 |
石油天然气 | 4393篇 |
武器工业 | 821篇 |
无线电 | 11595篇 |
一般工业技术 | 11863篇 |
冶金工业 | 4028篇 |
原子能技术 | 1309篇 |
自动化技术 | 12529篇 |
出版年
2025年 | 22篇 |
2024年 | 1560篇 |
2023年 | 1787篇 |
2022年 | 2838篇 |
2021年 | 3924篇 |
2020年 | 3112篇 |
2019年 | 2781篇 |
2018年 | 2694篇 |
2017年 | 3016篇 |
2016年 | 2962篇 |
2015年 | 3872篇 |
2014年 | 4662篇 |
2013年 | 5596篇 |
2012年 | 6097篇 |
2011年 | 6601篇 |
2010年 | 5840篇 |
2009年 | 5495篇 |
2008年 | 5418篇 |
2007年 | 5043篇 |
2006年 | 4896篇 |
2005年 | 4178篇 |
2004年 | 3089篇 |
2003年 | 2877篇 |
2002年 | 3176篇 |
2001年 | 2674篇 |
2000年 | 2153篇 |
1999年 | 1999篇 |
1998年 | 1472篇 |
1997年 | 1212篇 |
1996年 | 1086篇 |
1995年 | 955篇 |
1994年 | 756篇 |
1993年 | 589篇 |
1992年 | 454篇 |
1991年 | 352篇 |
1990年 | 258篇 |
1989年 | 190篇 |
1988年 | 189篇 |
1987年 | 100篇 |
1986年 | 95篇 |
1985年 | 55篇 |
1984年 | 50篇 |
1983年 | 25篇 |
1982年 | 28篇 |
1981年 | 25篇 |
1980年 | 18篇 |
1979年 | 9篇 |
1977年 | 7篇 |
1976年 | 11篇 |
1975年 | 8篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Sim-Kyu Bong No-June Park Sang Heon Lee Jin Woo Lee Aaron Taehwan Kim Xiaoyong Liu Sang Moo Kim Min Hye Yang Yong Kee Kim Su-Nam Kim 《International journal of molecular sciences》2022,23(17)
The activation and degranulation of immune cells play a pivotal role in allergic inflammation, a pathological condition that includes anaphylaxis, pruritus, and allergic march-related diseases. In this study, trifuhalol A, a phlorotannin isolated from Agarum cribrosum, inhibited the degranulation of immune cells and the biosynthesis of IL-33 and IgE in differentiated B cells and keratinocytes, respectively. Additionally, trifuhalol A suppressed the IL-33 and IgE-mediated activation of RBL-2H3 cells through the regulation of the TAK1 and MK2 pathways. Hence, the effect of trifuhalol A on allergic inflammation was evaluated using a Compound 48/80-induced systemic anaphylaxis mouse model and a house dust mite (HDM)-induced atopic dermatitis (AD) mouse model. Trifuhalol A alleviated anaphylactic death and pruritus, which appeared as an early-phase reaction to allergic inflammation in the Compound 48/80-induced systemic anaphylaxis model. In addition, trifuhalol A improved symptoms such as itching, edema, erythema, and hyperkeratinization in HDM-induced AD mice as a late-phase reaction. Moreover, the expression of IL-33 and thymic stromal lymphopoietin, inflammatory cytokines secreted from activated keratinocytes, was significantly reduced by trifuhalol A administration, resulting in the reduced infiltration of immune cells into the skin and a reduction in the blood levels of IgE and IL-4. In summarizing the above results, these results confirm that trifuhalol A is a potential therapeutic candidate for the regulation of allergic inflammation. 相似文献
93.
Chang-Gun Lee Soo-Jin Lee Seokho Park Sung-E Choi Min-Woo Song Hyo Won Lee Hae Jin Kim Yup Kang Kwan Woo Lee Hwan Myung Kim Jong-Young Kwak In-Jeong Lee Ja Young Jeon 《International journal of molecular sciences》2022,23(17)
The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD. 相似文献
94.
Serine/arginine-rich (SR) proteins are a type of splicing factor. They play significant roles in constitutive and alternative pre-mRNA splicing, and are involved in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay, mRNA translation, and miRNA biogenesis. In plants, SR proteins function under a complex regulatory network by protein–protein and RNA–protein interactions between SR proteins, other splicing factors, other proteins, or even RNAs. The regulatory networks of SR proteins are complex—they are regulated by the SR proteins themselves, they are phosphorylated and dephosphorylated through interactions with kinase, and they participate in signal transduction pathways, whereby signaling cascades can link the splicing machinery to the exterior environment. In a complex network, SR proteins are involved in plant growth and development, signal transduction, responses to abiotic and biotic stresses, and metabolism. Here, I review the current status of research on plant SR proteins, construct a model of SR proteins function, and ask many questions about SR proteins in plants. 相似文献
95.
Yanli Jin Seung-Nam Jung Mi Ae Lim Chan Oh Yudan Piao Hae Jong Kim QuocKhanh Nguyena Yea Eun Kang Jae Won Chang Ho-Ryun Won Bon Seok Koo 《International journal of molecular sciences》2022,23(17)
Various enzymes in the one-carbon metabolic pathway are closely related to the development of tumors, and they can all be potential targets for cancer therapy. Serine hydroxymethyltransferase2 (SHMT2), a key metabolic enzyme, is very important for the proliferation and growth of cancer cells. However, the function and mechanism of SHMT2 in head and neck cancer (HNC) are not clear. An analysis of The Cancer Genome Atlas (TCGA) data showed that the expression of SHMT2 was higher in tumor tissue than in normal tissue, and its expression was significantly associated with male sex, aggressive histological grade, lymph node metastasis, distant metastasis, advanced TNM stage, and lymphovascular invasion in HNC. SHMT2 knockdown in FADU and SNU1041 cell lines significantly inhibited cell proliferation, colony formation, migration, and invasion. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TCGA data revealed that SHMT2 was closely related to cancer stem cell regulation and maintenance. Furthermore, we found that silencing SHMT2 inhibited the expression of stemness markers and tumor spheroid formation compared with a control group. On the contrary, stemness markers were significantly increased after SHMT2 overexpression in HEP-2 cells. Interestingly, we found that knocking down SHMT2 reduced the expression of genes related to the Notch and Wnt pathways. Finally, silencing SHMT2 significantly reduced tumor growth and decreased stemness markers in a xenograft model. Taken together, our study suggests that targeting SHMT2 may play an important role in inhibiting HNC progression. 相似文献
96.
Dong Wan Yujun Liu Xinhao Guo Jianxin Zhang Jie Pan 《International journal of molecular sciences》2022,23(17)
To endow the polymeric prodrug with smart properties through a safe and simple method, matrix metalloproteinase (MMPs) responsive peptide GPLGVRGDG was introduced into the block copolymer to prepare TPGS3350-GPLGVRGDG-DOX&DOX micelles, where TPGS3350 is D-α-tocopheryl polyethylene glycol 3350 succinate. During the doxorubicin delivery, the cleavage of the peptide chain triggers de-PEGylation, and the remaining VRGDG sequence was retained on the surface of the micelles, which can act as a ligand to facilitate cell uptake. Moreover, the cytotoxicity of TPGS3350-GPLGVRGDG-DOX&DOX micelles against 4T1 cells was significantly improved, compared with TPGS3350-GPLGVRG-DOX&DOX micelles and TPGS3350-DOX&DOX micelles. During in vivo studies, TPGS3350-GPLGVRGDG-DOX&DOX micelles exhibited good anticancer efficacy with long circulation in the body and more efficient accumulation at the tumor site. Therefore, TPGS3350-GPLGVRGDG-DOX&DOX micelles have improved antitumor activity and reduced toxic side effects. This work opens new potential for exploring the strategy of drug delivery in clinical applications. 相似文献
97.
Yunlong Pang Chunxia Liu Meng Lin Fei Ni Wenhui Li Jin Cai Ziliang Zhang Huaqiang Zhu Jingxian Liu Jiajie Wu Guihua Bai Shubing Liu 《International journal of molecular sciences》2022,23(17)
Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usually controlled by multiple genes with partial resistance. In this study, a recombinant inbred line population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experiments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe rust, and explained 8.0–21.2%, 10.1–22.7%, and 11.6–18.0% of the phenotypic variation, respectively. QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related genes were differently expressed between the two parents, and therefore were considered as the putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes. 相似文献
98.
Jong Hee Kim Jihyeon Yu Hee Kyoung Kim Jin Young Kim Me-Sun Kim Yong-Gu Cho Sangsu Bae Kwon Kyoo Kang Yu Jin Jung 《International journal of molecular sciences》2022,23(18)
Lycopene epsilon-cyclase (LcyE) is a key enzyme in the carotenoid biosynthetic pathway of higher plants. Using the CRSPR/Cas9 and the geminiviral replicon, we optimized a method for targeted mutagenesis and golden SNP replacement of the LcyE gene in rice. We have exploited the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene via homology-directed repair (HDR). Mutagenesis experiments performed on the Donggin variety achieved precise modification of the LcyE loci with an efficiency of up to 90%. In HDR experiments, our target was the LcyE allele (LcyE-H523L) derived from anther culture containing a golden SNP replacement. The phenotype of the homologous recombination (HR) mutant obtained through the geminiviral replicon-based template delivery system was tangerine color, and the frequency was 1.32% of the transformed calli. In addition, the total carotenoid content of the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines was 6.8–9.6 times higher than that of the wild-type (WT) calli, respectively. The reactive oxygen species content was lower in the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines. These results indicate that efficient HDR can be achieved in the golden SNP replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. 相似文献
99.
100.
Guixiang Lv Zhihui Dong Yunhan Zhao Ning Ma Xiaochen Jiang Jia Li Jinyue Wang Jiaxin Wang Wenxiu Zhang Xin Lin Zheng Hu 《International journal of molecular sciences》2022,23(18)
Photodynamic therapy (PDT) has significant advantages in the treatment of malignant tumors, such as high efficiency, minimal invasion and less side effects, and it can preserve the integrity and quality of the organs. The power density, irradiation time and photosensitizer (PS) concentration are three main parameters that play important roles in killing tumor cells. However, until now, the underlying relationships among them for PDT outcomes have been unclear. In this study, human malignant glioblastoma U-118MG and melanoma A375 cells were selected, and the product of the power density, irradiation time and PS concentration was defined as the total photodynamic parameter (TPP), in order to investigate the mechanisms of PS sinoporphyrin sodium (DVDMS)-mediated PDT (DVDMS-PDT). The results showed that the survival rates of the U-118MG and A375 cells were negatively correlated with the TPP value in the curve, and the correlation exactly filed an e-exponential function. Moreover, according to the formula, we realized controllable killing effects of the tumor cells by randomly adjusting the three parameters, and we finally verified the accuracy and repeatability of the formula. In conclusion, the establishment and implementation of a newly functional relationship among the PDT parameters are essential for predicting PDT outcomes and providing personalized precise treatment, and they are contributive to the development of PDT dosimetry. 相似文献