首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   52篇
  国内免费   3篇
电工技术   43篇
综合类   3篇
化学工业   139篇
金属工艺   12篇
机械仪表   25篇
建筑科学   36篇
矿业工程   2篇
能源动力   48篇
轻工业   63篇
水利工程   15篇
石油天然气   12篇
无线电   57篇
一般工业技术   94篇
冶金工业   48篇
原子能技术   5篇
自动化技术   92篇
  2023年   9篇
  2022年   16篇
  2021年   40篇
  2020年   36篇
  2019年   47篇
  2018年   56篇
  2017年   49篇
  2016年   52篇
  2015年   23篇
  2014年   50篇
  2013年   74篇
  2012年   47篇
  2011年   32篇
  2010年   29篇
  2009年   23篇
  2008年   19篇
  2007年   9篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2000年   3篇
  1999年   4篇
  1998年   16篇
  1997年   7篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有694条查询结果,搜索用时 31 毫秒
41.
Multimodal imaging provides complimentary information that is advantageous in studying both cellular and molecular mechanisms in vivo, which has tremendous potential in pre‐clinical research and clinical translational imaging. It is desirable to design probes for multimodal imaging that can be administered minimally but provides multifaceted information. Herein, we demonstrate the complementary dual functional ability of a nanoconstruct for molecular imaging in both photoacoustic (PA) and surface‐enhanced Raman scattering (SERS) biosensing simultaneously in tandem. To realize this, a group of NIR active organic molecules are designed and synthesized that possess both SERS and PA activity. Nanoconstructs realized by anchoring such molecules onto gold nanoparticles are demonstrated for targeting cancer biomarkers in vivo while providing complimentary information about biodistribution and targeting efficiency. In future, such nanoconstructs could play a major role in identifying surgical margins and also for disease monitoring in translational medicine.  相似文献   
42.
Discharging the effluents of textile wastewaters into potable water resources can endanger the ecosystem, due to their reactivity, toxicity, and chemical stability. In this research, the application of powder activated carbon modified with magnetite nanoparticles (PAC-MNPs) as an adsorbent for removal of reactive dyes (Reactive black 5 (RB5) and reactive red 120 (RR120)) was studied in a batch system. The adsorption performance was evaluated as a function of temperature, contact time and different adsorbent and adsorbate concentrations. The levels of factors were statistically optimized using Box-Behnken Design (BBD) from the response surface methodology (RSM) to maximize the efficiency of the system. The adsorption process of both dyes was fit with the pseudo-second order kinetic and Langmuir isotherm models. The identified optimum conditions of adsorption were 38.7 °C, 46.3 min, 0.8 g/L and 102 mg/L for temperature, contact time, adsorbent dose, and initial dyes concentration, respectively. According to the Langmuir isotherm, the maximum sorption capacities of 175.4 and 172.4 mg/g were obtained for RB5 and RR120, respectively. Thermodynamics studies indicated that the adsorption process of the reactive dyes was spontaneous, feasible, and endothermic. After five cycles, the adsorption efficiency was around 84 and 83% for RB5 and RR120, respectively. A high value of desorption was achieved, suggesting that the PAC-MNPs have a good potential in regeneration and reusability, and also can be effectively utilized in industrial applications. PAC-MNPs also show a good anti-interference potential for removal of reactive dyes in dye-industry wastewaters.  相似文献   
43.
We report on the utilization of an ultrathin buffer layer at the organic/organic (O/O) interface to enhance device efficiency in organic light‐emitting diodes. Two different kinds of buffer layers are examined: metal and dielectric. It is shown that employment of an ultrathin Ag layer with a thickness of 1–2 nm enhances the device performance, while a MgF2 dielectric buffer cannot affect the device properties considerably. In particular, the turn‐on voltage of the device with an appropriate buffer layer is reduced about 3 V, its current efficiency increases by a factor of more than three, and the power efficiency increases by a factor of more than five in comparison to the control device when a Ag buffer layer is introduced at the O/O interface. By employment of the buffer layer at the interface, an accumulation of current carriers appears within the device that redistribute the recombination profile toward the interior part of the emissive layer. Also, morphological examinations reveal that distinguishable phase segregation occurs in the blend of the hole‐transport layer. In particular, the polymer component remains at the surface and facilitates the hole transport into the successive layers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43894.  相似文献   
44.
In this article, a novel method for synthesis of 2-substituted benzimidazoles using MnO2 nanoparticles as a convenient oxidant agent in ethanol-water (1:1) as solvent under ultrasound irradiation was demonstrated. In this protocol the desired products were purely obtained in high yields. The main advantages of this research are: mild procedure, simplicity of method, easily work-up, high yields, and short reaction times. The MnO2 nanoparticles were synthesized through a solid-state reaction route using simple strarting materials. Furthermore, their structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR).  相似文献   
45.
Bulletin of Engineering Geology and the Environment - Water seepage from dam foundations causes reservoir water loss and raises the risk of dam instability. One method of remediation for...  相似文献   
46.
The cubic equation of state (CEoS) is a powerful method for calculation of (vapor + liquid) equilibrium (VLE) in polymer solutions. Using CEoS for both the vapor and liquid phases allows one to calculate the non‐ideality of polymer solutions based on a single EoS approach. In this research, vapor–liquid equilibria calculations of polyvinyl acetate (PVAc)/solvent solutions were performed. In this approach, eight models containing PRSV and SRK CEoS separately combined with four mixing rules namely vdW1, vdW2, Wong–Sandler (WS), and Zhong–Masuoka (ZM) were applied to calculations of bubble point pressure. For the better prediction, the adjustable binary interaction parameters existing in any mixing rule were optimized. The results were very acceptable and satisfactory. Absolute average deviations (%AAD) between predicted results and experimental bubble point pressure data were calculated and presented. The capability of two cubic equations of state had a good agreement with experimental data and predict the correct type of phase behavior in all cases, but the performance of the PRSV + vdW2 was more reliable than the other models with 2.65% in AAD for total of solution systems. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40651.  相似文献   
47.
Polyurethane-urea (PUU) nanocomposite membranes have been prepared using various loadings of silica (SiO2) nanoparticles. A Novel PU was fabricated by a two-step bulk polymerization technique based on polycaprolactone (PCL), hexamethylene diisocyanate (HDI), and diamine chain extender, 4,4-methylenebis(2-chloroaniline) (MOCA). The FTIR spectra indicated that the extent of phase separation reduces with increasing SiO2 content. The presence of crystal regions in the soft and hard segments was confirmed by DSC and XRD analyses. The obtained results illustrated a decrement in the gases' permeation in the presence of SiO2 particles. By increasing the filler content up to 15 wt% and pressure of 8 bar, the gas permeation value of the CO2, O2, and N2 decreased 36%, 54%, and 59%, respectively. However, the permselectivity of the CO2/N2 and O2/N2 increased considerably, 55% and 13% respectively. On the contrary, by raising the temperature, a dramatic augmentation in the permeability of all gases with a simultaneous reduction in the selectivity values of both gas pairs was revealed. Increasing the pressure led to a decrease in the permeability values of all membranes for O2 and N2, whereas the permeability for CO2 increased with the pressure. Nevertheless, the selectivity values for the pair of gases increased (at a pressure of 10 bar, 1.66 and 1.17 times the neat PU for CO2/N2 and O2/N2, respectively). Furthermore, the permeability of the CO2, O2, and N2 for the mixed gases was smaller than for pure ones at the same gas upstream pressure. Nonetheless, like the pure gas, the selectivity of both pair gases increased.  相似文献   
48.
Gas holdup and gas–liquid mass transfer coefficient were considered in an external airlift reactor. Air was sparged through some aliphatic alcohols (methanol, ethanol, n-propanol, and n-butanol) with different concentrations (0–1%, v/v). It was observed that gas holdup and mass transfer coefficient increased with increasing the number of carbons in alcohols. Furthermore, an increment in alcohols concentration increased gas holdup and mass transfer coefficient. The same behavior was observed in external and internal loop airlift reactors although gas holdup and mass transfer coefficient values were less than those of internal airlift reactor. According to the experiments, two correlations for gas holdup and mass transfer were developed.  相似文献   
49.
In this work, ternary polymer blends based on (polyamide 6)/(poly[styrene‐co‐acrylonitrile])/(poly[styrene‐b‐{ethylene‐co‐butylene}‐b‐styrene]) (SEBS) triblock copolymer and a varying concentration of the reactive (maleic anhydride)‐grafted SEBS were prepared by using a melt‐blending process. The effects of the material parameters (composition of ternary blends and SEBS/[{maleic anhydride}‐grafted SEBS] concentration ratio) and blending sequence on the morphological and mechanical properties of ternary blends were studied. Taguchi experimental design methodology was employed to design the experiments and select the material and processing parameters for the optimized mechanical properties. Tensile properties (Young's modulus and yield stress) and impact strength were considered as the response variables. It was demonstrated that there is a meaningful relationship between the composition of blends, processing parameters, observed phase structure, and obtained mechanical properties. The mechanical tests showed that the highest impact strength was achieved as the dispersion of the rubbery phase achieved an optimum size of about 1 μm. J. VINYL ADDIT. TECHNOL., 23:329–337, 2017. © 2015 Society of Plastics Engineers  相似文献   
50.

A nonlocal strain gradient model is developed in this research to analyse the nonlinear frequencies of functionally graded porous curved nanotubes. It is assumed that the curved nanotube is in contact with a two-parameter nonlinear elastic foundation and is also subjected to the uniform temperature rise. The non-classical theory presented for curved nanotubes contains a nonlocal parameter and a material length scale parameter which can capture the size effect. A power law distribution function is used to describe the graded properties through the thickness direction of curved nanotubes. The even dispersion pattern is used to model the porosities distribution. The high-order shear deformation theory and the von Kármán type of geometric non-linearity are utilized to obtain the nonlinear governing equations of the structure. The size-dependent equations of motion for the large amplitude vibrations of curved nanotubes are obtained by employing Hamilton’s principle. The analytical solutions are extracted for the curved nanotube with immovable hinged-hinged boundary conditions. Size-dependent frequencies of the curved nanotube exposed to thermal field are obtained using the two-step perturbation technique and Galerkin procedure. The effects of important parameters such as nonlocal and length scale parameters, temperature field, elastic foundation, porosity, power law index and geometrical parameters are studied in detail.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号