首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15440篇
  免费   1278篇
  国内免费   899篇
电工技术   948篇
技术理论   1篇
综合类   1079篇
化学工业   2440篇
金属工艺   782篇
机械仪表   950篇
建筑科学   1336篇
矿业工程   442篇
能源动力   487篇
轻工业   1169篇
水利工程   211篇
石油天然气   853篇
武器工业   119篇
无线电   1717篇
一般工业技术   1599篇
冶金工业   726篇
原子能技术   311篇
自动化技术   2447篇
  2024年   92篇
  2023年   288篇
  2022年   471篇
  2021年   629篇
  2020年   502篇
  2019年   401篇
  2018年   449篇
  2017年   507篇
  2016年   428篇
  2015年   621篇
  2014年   753篇
  2013年   857篇
  2012年   917篇
  2011年   1030篇
  2010年   941篇
  2009年   886篇
  2008年   883篇
  2007年   863篇
  2006年   919篇
  2005年   744篇
  2004年   528篇
  2003年   433篇
  2002年   453篇
  2001年   409篇
  2000年   465篇
  1999年   431篇
  1998年   320篇
  1997年   269篇
  1996年   252篇
  1995年   194篇
  1994年   161篇
  1993年   103篇
  1992年   88篇
  1991年   84篇
  1990年   45篇
  1989年   47篇
  1988年   36篇
  1987年   20篇
  1986年   30篇
  1985年   12篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1965年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
详尽地论述、分析、对比和讨论了网络化控制系统中的控制与通信协同设计问题.通过对该问题国内外研究现状的分析,强调了控制与通信协同设计研究的必要性、重要性和紧迫性,并着重从通信序列及通信协议两个方面阐述了控制与通信协同设计研究领域存在的不足、现有解决策略及主要结果的分析和对比,从而指出该领域急需解决的科学问题、可能的求解方向和今后的发展趋势,并为将来的研究工作提出了有益的建议和参考思路.  相似文献   
82.
Electrocatalytic hydrogenation (ECH) is a burgeoning strategy for the sustainable utilization of hydrogen. However, how to effectively suppress the competitive hydrogen evolution reaction (HER) is a big challenge to ECH catalysis. In this study, amine (NH2 R)-coordinated Pd nanoparticles loaded on carbon felt (Pd@CF) as a catalyst is successfully synthesized by a one-step solvothermal reduction method using oleylamine as the reducing agent. An exceptional ECH reactivity on benzaldehyde is achieved on the optimal Pd@CF catalyst in terms of a high conversion (89.7%) and selectivity toward benzyl alcohol (89.8%) at −0.4 V in 60 min. Notably, the Faradaic efficiency for producing benzyl alcohol is up to 90.2%, much higher than that catalyzed by Pd@CF-without N-group (41.1%) and thecommercial Pd/C (20.9%). The excellent ECH performance of Pd@CF can be attributed to the enriched electrons on Pd surface resulted from the introduction of NH2 R groups, which strengthens both the adsorption of benzaldehyde and the adsorbed hydrogen (Hads) on Pd, preventing the combination of Hads to form H2, that is, inhibiting the HER. This study gives a new insight into design principles of highly efficient electrocatalysts for the hydrogenation of unsaturated aldehydes molecules.  相似文献   
83.
Phosphorus exhibits high capacity and low redox potential, making it a promising anode material for future sodium-ion batteries. However, its practical applications are confined by poor durability and sluggish kinetics. Herein, an innovative in-situ electrochemically self-driven strategy is presented to embed phosphorus nanocrystal (≈10 nm) into a Fe-N-C-rich 3D carbon framework (P/Fe-N-C). This strategy enables rapid and high-capacity sodium ion storage. Through a combination of experimental assistance and theoretical calculations, a novel synergistic catalytic mechanism of Fe-N-C is reasonably proposed. In detail, the electrochemical formation of Fe-N-C catalytic sites facilitates the release of fluorine in ester-based electrolyte, inducing Na+-conducting-enhanced solid-electrolyte interphase. Furthermore, it also effectively induces the dissociation energy of the P-P bond and promotes the reaction kinetics of P anode. As a result, the unconventional P/Fe-N-C anode demonstrates outstanding rate-capability (267 mAh g−1 at 100 A g−1) and cycling stability (72%, 10 000 cycles). Notably, the assembled pouch cell achieves high-energy density of 220 Wh kg−1.  相似文献   
84.
Material design of guest acceptor is always a big challenge for improving the efficiency of ternary organic solar cells (OSCs). Here, a pair of isomeric nonfullerene acceptors based on quinoxaline core, Qx–p-C7H8O and Qx–m-C7H8O, is designed and synthesized. By moving the alkoxy chain attached on side phenyl from meta-position to para-position, both π–π stacking distance and crystallinity are enhanced simultaneously. They obtain the uplifted lowest unoccupied molecular orbital level. Compared to Qx–m-C7H8O, Qx–p-C7H8O exhibits wider absorption spectrum and higher extinction coefficient. Using D18-Cl:N3 as host materials, the addition of guest acceptor Qx–p-C7H8O significantly improves the power conversion efficiency (PCE) from 17.61% to 18.49% because of higher open-circuit voltage (0.875 V) and short-circuit current density (27.85 mA cm−2). This can be attributed to the faster exciton dissociation, more balanced carrier mobility, fine fiber morphology, and lower energy loss in the ternary devices. However, Qx–m-C7H8O-based ternary device achieves relatively low PCE of 17.17% because this device shows extremely low electron mobility. The results indicate that molecular stacking, film morphology, etc., can be effectively modulated by fine-tuning the side chains of guest materials, which may be an effective design rule for further improving the PCE of OSCs.  相似文献   
85.
With rapid development of photovoltaic technology, flexible perovskite solar cells (f-PSCs) have attracted much attention for their light weight, high flexibility and portability. However, the power conversion efficiency (PCE) achieved so far is not yet comparable to that of rigid devices. This is mainly due to the great challenge of depositing homogeneous and high-quality perovskite films on flexible substrate. In this study, the pre-buried 3-aminopropionic acid hydroiodide (3AAH) additives into the electron transport layer (ETL) and modified the ETL/perovskite (PVK) interface by a bottom-up strategy. 3AAH treatment induced a templated perovskite grain growth and improved the quality of the ETL. By this, the residual stresses generated in PVK during the annealing-cooling process are released and converted into micro-compressive stresses. As a result, the defect density of f-PSCs with pre-buried 3AAH is reduced and the photovoltaic performance is greatly improved, reaching an exceptional PCE of 23.36%. This strategy provides a new idea to bridge the gap between flexible and rigid devices.  相似文献   
86.
Drawing inspiration from the jumping motions of living creatures in nature, jumping robots have emerged as a promising research field over the past few decades due to great application potential in interstellar exploration, military reconnaissance, and life rescue missions. Early reviews mainly focused on jumping robots made of lightweight and rigid materials with mechanical components, concentrating on jumping control and stability. Herein, attention is paid to the jumping mechanisms of soft actuators assembled from various soft smarting materials and powered by different stimulus sources. The challenges and prospects of soft jumping actuators are also discussed. It is hoped that this review will contribute to the further development of soft jumping actuators and broaden their practical applications.  相似文献   
87.
This article focuses on the problem of fixed-time prescribed performance platoon control for heterogeneous vehicles with unknown dead-zone and actuator saturation. First, an equivalent transformation is developed to approximate the actuator nonlinearity (i.e., dead-zone and saturation), which reduces the complexity of controller design. Then, to guarantee the tracking errors converge to the predetermined region in the given time, a modified prescribed performance function is presented. Based on this, a novel adaptive sliding mode control scheme is developed in the context of fixed-time theory, which is proved to be capable of ensuring individual vehicle stability and string stability in fixed time. In addition, under the proposed control scheme, the convergence time is independent of initial conditions of the system. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed control scheme.  相似文献   
88.
Multiaxial hydraulic manipulators are complicated systems with highly nonlinear dynamics and various modeling uncertainties, which hinders the development of high-performance controller. In this paper, a neural network feedforward with a robust integral of the sign of the error (RISE) feedback is proposed for high precise tracking control of hydraulic manipulator systems. The established nonlinear model takes three-axis dynamic coupling, hydraulic actuator dynamics, and nonlinear friction effects into consideration. A radial basis function neural network (RBFNN) is synthesized to approximate the uncertain system dynamics and external disturbance, which can greatly reduce the dependence on accurate system model. In addition, a continuous RISE feedback law is judiciously integrated to deal with the residual unknown dynamics. Since the major unknown dynamics can be estimated by the RBFNN and then compensated in the feedforward design, the high-gain feedback issue in RISE feedback control will be avoided. The proposed RISE-based neural network robust controller theoretically guarantees an excellent semi-global asymptotic stability. Comparative simulation is performed on a 3-DOF hydraulic manipulator, and the obtained results verify the effectiveness of the proposed controller.  相似文献   
89.
90.
Inspired by mussel‐adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self‐polymerization process of dopamine is time‐consuming and the coatings of PDA are not reusable. Herein, a reusable and time‐saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron–hole pairs generated from photo‐electrocatalysis and transfer the captured electrons to participate in the photo‐electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as‐prepared Pt@TiO2 NTA composites exhibit surface‐enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV‐assisted self‐cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel‐inspired electropolymerization strategy and the fast EPD‐reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号