首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7034篇
  免费   183篇
  国内免费   18篇
电工技术   265篇
综合类   9篇
化学工业   1526篇
金属工艺   198篇
机械仪表   129篇
建筑科学   239篇
矿业工程   11篇
能源动力   285篇
轻工业   676篇
水利工程   34篇
石油天然气   13篇
无线电   533篇
一般工业技术   1083篇
冶金工业   1375篇
原子能技术   191篇
自动化技术   668篇
  2022年   66篇
  2021年   87篇
  2020年   53篇
  2019年   86篇
  2018年   95篇
  2017年   90篇
  2016年   112篇
  2015年   80篇
  2014年   155篇
  2013年   341篇
  2012年   235篇
  2011年   342篇
  2010年   261篇
  2009年   270篇
  2008年   282篇
  2007年   273篇
  2006年   249篇
  2005年   254篇
  2004年   191篇
  2003年   204篇
  2002年   201篇
  2001年   123篇
  2000年   124篇
  1999年   142篇
  1998年   317篇
  1997年   241篇
  1996年   175篇
  1995年   154篇
  1994年   170篇
  1993年   132篇
  1992年   85篇
  1991年   83篇
  1990年   87篇
  1989年   79篇
  1988年   71篇
  1987年   68篇
  1986年   78篇
  1985年   91篇
  1984年   88篇
  1983年   76篇
  1982年   79篇
  1981年   86篇
  1980年   76篇
  1979年   57篇
  1978年   40篇
  1977年   79篇
  1976年   101篇
  1975年   68篇
  1973年   47篇
  1972年   46篇
排序方式: 共有7235条查询结果,搜索用时 15 毫秒
141.
Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agriculture R2 = .61; deforestation R2 = .39). A total of 79 dams, resulting in 72 km3 of volumetric water capacity, were constructed between 2003 and 2018 in the Mekong River Basin. This dam development coincided with a decreasing trend in the number of dry season warm days per year in the lower Mekong River, while Tonle Sap Lake's number of dry season warm days continued to increase during this same period. The present study revealed that Tonle Sap Lake's temperature trends are highly influenced by temperature trends in the local climate, agriculture development and deforestation of the lake's watershed. Although there were no noticeable impacts observed from upstream dam development in the Mekong River Basin, local‐to‐regional agricultural and land management of the lake's watershed appear to be effective strategies for maintaining a stable thermal regime in the lake in order to facilitate maximum ecosystem health.  相似文献   
142.
When reaction-bonded silicon nitride containing MgO/Y2O3 additives is sintered at three different temperatures to form sintered reaction-bonded silicon nitride (SRBSN), the thermal conductivity increases with sintering temperature. The β-Si3N4 (silicon nitride) crystals of SRBSN ceramics were synthesized and characterized to investigate the relation between the crystal structure and the lattice oxygen content. The hot-gas extraction measurement result and the crystal structure obtained using Rietveld analysis suggested that the unit cell size of the β-Si3N4 crystal increases with the decrease in the lattice oxygen content. This result is reasonable considering that the lattice oxygen with the smaller covalent radius substitutes nitrogen with the larger one in the β-Si3N4 crystals. The lattice oxygen content decreased with increasing sintering temperature which also correlated with increase in thermal conductivity. Moreover, it is noteworthy from the viewpoint that it may be possible to apply the lattice constant analysis for the nondestructive and simple measurement of the lattice oxygen content that deteriorates the thermal conductivity of the β-Si3N4 ceramics.  相似文献   
143.
Hydroxyapatite (HAp Ca10(PO4)6(OH)2) is known to be a biomaterial and an adsorbent for chromatography. In this study, HAp was agglomerated with anatase TiO2 to manufacture thermal-spray powders to improve the adsorption activity of TiO2, and then to improve its photocatalytic activity. The microstructures, compositions and photocatalytic activity of plasma-sprayed TiO2, TiO2-10%HAp, TiO2-30%HAp, and HAp coatings were investigated. Due to the low thermal conductivity of HAp compound, not all HAp particles fully melted even under the arc current of 800 A. The addition of HAp inhibited the phase transformation of anatase TiO2 to rutile. Under the arc current of 600 A, the anatase content in the TiO2, TiO2-10%HAp and TiO2-30%HAp coatings was 11, 20 and 42%, respectively. With the increasing of the spraying distance from 70 to 110 mm, the anatase content in the TiO2-30%HAp coatings decreased from 34 to 17% under arc current of 700 A. Furthermore, a slight decomposition of HAp to α-Ca3(PO4)2 was found in the TiO2-30%HAp coatings, it did not decompose to CaO and P2O5 according to the XRD and EDAX analysis. The addition of the secondary gas of helium had no significant influence on the melting state of the TiO2-HAp feedstock powders. Moreover, the HAp in the TiO2-10%HAp and TiO2-30%HAp coatings had adsorption characteristic to acetaldehyde. The photocatalytic activity of TiO2-10%HAp coating was highest among TiO2, TiO2-10%HAp, and TiO2-30%HAp coatings sprayed under the arc current of 600 A for the optimum adsorption property and anatase content. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   
144.
It is time that universities stop using the excuse that industry does not want a five-year-engineering-degree graduate. Industry does not have any choice since it can only select from the available talent pool. At present, materials graduates with four-year degrees often lack the critical tools necessary to perform the non-engineering jobs that are frequently offered. Courses such as statistics, process control and management will help remedy this situation. Today, the individual with a master of science degree, having spent over five years in school, still lacks many essential non-engineering skills. Worse, many students in master’s degree programs graduate with a primarily science background and have not taken the full basic engineering curriculum. For this reason, there is no comparison between the current, research-oriented M.S. degree and the proposed master of engineering degree. The outlined curriculum allows for a continuation of many current programs in materials while providing a transition to a five-year, first professional degree. The program allows the student to choose, after four years of education, whether he or she really wants to obtain a professional degree. Further, the four-year degree recipient enters the field with a better education than is available at present, and industry is supplied with a better-educated mix of degree recipients.  相似文献   
145.
The effects of solid solution alloying on the creep-rupture properties, deformation characteristics, ductility, and fracture of pure aluminum were studied by means of creep-rupture tests on polished specimens of three alloys each of Al-Cu (0.24, 0.79, and 2.05 pct Cu), Al-Zn (4.93, 9.89, and 19.78 pct Zn), and Al-Mg (0.94, 1.92, and 5.10 pct Mg) at 500°, 700°, and 900°F.  相似文献   
146.
Mechanical deformation of Pd40Ni40P20 was characterized in compression over a wide strain rate range (3.3×10−5 to 2×103 s−1) at room temperature. The compression sample fractured with a shear plane inclined 42 degree with respect to the loading axis, in contrast to 56 degree for the case of tension. This suggests the yielding of the material deviates from the classical von Mises yield criterion, but follows the Mohr-Coulomb yield criterion. Fracture stress as well as strain was found to decrease with increasing applied strain rate. The compressive stress (1.74 GPa) was also found to be higher than the tensile fracture stress at a quasi-static strain rate. Close examination of the stress–strain curves revealed that localized shear might have occurred at a compressive stress of about 1.4 GPa, much lower than the “apparent” yield stress of 1.74 GPa. However, the stress of 1.4 GPa for shear band initiation is almost the same as the fracture stress measured at a dynamic strain rate of 5×102 s−1. These results suggested that the fracture of a bulk metallic glass is sensitive to the applied loading rate.  相似文献   
147.
The microstructure development during plastic deformation was reviewed for iron and steel which were subjected to cold rolling or mechanical milling (MM) treatment, and the change in strengthening mechanism caused by the severe plastic deformation (SPD) was also discussed in terms of ultra grain refinement behavior. The microstructure of cold-rolled iron is characterized by a typical dislocation cell structure, where the strength can be explained by dislocation strengthening. It was confirmed that the increase in dislocation density by cold working is limited at 1016m−2, which means the maximum hardness obtained by dislocation strengthening is HV3.7 GPa. However, the iron is abnormally work-hardened over the maximum dislocation strengthening by SPD of MM because of the ultra grain refinement caused by the SPD. In addition, impurity of carbon plays an important role in such grain refinement: the carbon addition leads to the formation of nano-crystallized structure in iron.  相似文献   
148.
Amorphous Al50Ta60 alloy powders have been synthesized by mechanical alloying (MA) from elemental powders of aluminium and tantalum, and mechanical disordering (MD) from crystalline intermetallic compound powders of AlTa respectively using the rod milling technique. The mechanically alloyed and the mechanically disordered alloy powders were characterized by X-ray diffraction, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, differential thermal analysis, differential scanning calorimetry and chemical analysis. The results have shown that the crystal-to amorphous transformation in the MD process occurs through one stage, while the crystallineto-amorphous formation in the MA process occurs through three stages. At the early and intermediate stages of the MA time, heating the alloy powders to 700 K leads to the formation of an amorphous phase by a solid-state amorphizing reaction. At the final stage of the MA time, the amorphous phase is crystallized through a single sharp exothermic peak. Contrary to this, amorphous alloy powders produced by MD are crystallized through two broad exothermic peaks.  相似文献   
149.
Mechanical strengthening of a Si cantilever by applying KOH wet etching was investigated. Two kinds of Si cantilever specimens having the different crystallographic orientations of the sidewall surfaces, i.e., Si{100} and Si{110}, were fabricated from the same SOI wafer by a Bosch process. The typical height and pitch of the scalloping formed on the sidewall were 248 and 917 nm, respectively. A 50 % KOH (40 °C) chemical wet etching was applied to increase the fracture stress of the Si cantilever. The fracture stress in the both of Si{100} and Si{110} cantilevers increased with the advance of the etching. The obtained maximum fracture stress in Si{100} and Si{110} were 4.2 and 3.7 GPa, respectively. Sidewall surface of the cantilever was analyzed to investigate the mechanical strengthening of Si cantilever by wet etching. The etched surface crystalline was analyzed by the transmission electron microscope (TEM), and confirmed that the thickness of the affected flow layer was less than 10 nm from the obtained TEM image. Then the change of the surface roughness by the KOH etching was analyzed by the atomic force microscope. The surface was smoothened with the advance of the KOH etching. The roughness value of Ra in Si{100} and Si{110} decreased to 12.1 and 37.7 nm, respectively.  相似文献   
150.
We developed flexible displays using back‐channel‐etched In–Sn–Zn–O (ITZO) thin‐film transistors (TFTs) and air‐stable inverted organic light‐emitting diodes (iOLEDs). The TFTs fabricated on a polyimide film exhibited high mobility (32.9 cm2/Vs) and stability by utilization of a solution‐processed organic passivation layer. ITZO was also used as an electron injection layer (EIL) in the iOLEDs instead of conventional air‐sensitive materials. The iOLED with ITZO as an EIL exhibited higher efficiency and a lower driving voltage than that of conventional iOLEDs. Our approach of the simultaneous formation of ITZO film as both of a channel layer in TFTs and of an EIL in iOLEDs offers simple fabrication process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号