首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488776篇
  免费   6372篇
  国内免费   2352篇
电工技术   9008篇
综合类   757篇
化学工业   71009篇
金属工艺   20608篇
机械仪表   14455篇
建筑科学   11816篇
矿业工程   1992篇
能源动力   12362篇
轻工业   43173篇
水利工程   4605篇
石油天然气   7005篇
武器工业   46篇
无线电   59541篇
一般工业技术   94623篇
冶金工业   96164篇
原子能技术   10713篇
自动化技术   39623篇
  2021年   3496篇
  2019年   3306篇
  2018年   5582篇
  2017年   5592篇
  2016年   5995篇
  2015年   4145篇
  2014年   7035篇
  2013年   21493篇
  2012年   11684篇
  2011年   16340篇
  2010年   12929篇
  2009年   14697篇
  2008年   15438篇
  2007年   15576篇
  2006年   13747篇
  2005年   12707篇
  2004年   12507篇
  2003年   12261篇
  2002年   12031篇
  2001年   12195篇
  2000年   11373篇
  1999年   12276篇
  1998年   30971篇
  1997年   21853篇
  1996年   16741篇
  1995年   12624篇
  1994年   11129篇
  1993年   11045篇
  1992年   7931篇
  1991年   7668篇
  1990年   7197篇
  1989年   7083篇
  1988年   6776篇
  1987年   5946篇
  1986年   5902篇
  1985年   6715篇
  1984年   6135篇
  1983年   5642篇
  1982年   5284篇
  1981年   5319篇
  1980年   5150篇
  1979年   4840篇
  1978年   4877篇
  1977年   5708篇
  1976年   7931篇
  1975年   4119篇
  1974年   3999篇
  1973年   4022篇
  1972年   3338篇
  1971年   2966篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
191.
The aim of the present contribution is to study the influence of the post-spinning heat - treatment of single TiO2/PVP precursor fibers on the properties and morphology of the final titanium-based microfibers. The post-spinning treatment conditions were: calcination in air at 450–600?°C and pyrolysis in argon at 1000–1700?°C. Calcination resulted in a production of anatase-rich and pure rutile fibers. The use of an alternative sintering method, the low-temperature plasma treatment, led to the crystallization of the composite Magnéli phases/polymer fibers. As a result of the same one precursor, pyrolysis at 1000?°C, the Carbon/TiO2 composite fibers were obtained. Rising the treatment temperature in inert atmosphere led to the formation of the titanium carbide fibers. The formation process and all the obtained products were characterized by differential scanning calorimetry accompanied with thermogravimetric analysis (DSC/TGA), scanning and transmission electron microscopy (SEM, TEM), X-ray diffraction (XRD), and image analysis techniques.  相似文献   
192.
Successful fabrication of glass-based hybrid nanocomposites (GHNCs) incorporating Ag, core-shell CdSe/CdS and CdSxSe1?x nanoparticles (NPs) is herein reported. Both metallic (Ag) and semiconductor (CdSe/CdS) NPs were pre-synthesized, suspended in colloids and added into the sol-gel reaction medium which was used to fabricate the GHNCs. During fabrication of the nanocomposites a fraction (20–60%) of core-shell CdSe/CdS NPs was alloyed into CdSxSe1?x (0.20 < x < 0.35) NPs without changing morphology. Modulation of in situ alloying is possible via the relative content of organics added into the sol-gel protocol. Within colloids Ag (core-shell CdSe/CdS) NPs presented average diameter and polydispersity index of 49.5 nm (4.2 nm) and 0.41 (0.21), respectively. On the other hand, the Ag (core-shell CdSe/CdS) NPs’ average diameter and polydispersity index assessed from the GHNCs were respectively 51.5 nm (4.1 nm) and 0.43 (0.25), revealing negligible aggregation of the nanophases within the glass template. The new GHNCs herein introduced presented two independent excitonic transitions associated to homogenously dispersed semiconductor NPs, peaking around 420 nm (core-shell CdSe/CdS) and 650 nm (CdSxSe1?x) and matching the plasmonic resonance (Ag NPs) in the 400–500 nm range. We envisage that the new GHNCs represent very promising candidates for superior light manipulation while illuminated with multiple laser beams in quantum interference-based devices.  相似文献   
193.
194.
The central nervous system (CNS) is the most complex structure in the body, consisting of multiple cell types with distinct morphology and function. Development of the neuronal circuit and its function rely on a continuous crosstalk between neurons and non-neural cells. It has been widely accepted that extracellular vesicles (EVs), mainly exosomes, are effective entities responsible for intercellular CNS communication. They contain membrane and cytoplasmic proteins, lipids, non-coding RNAs, microRNAs and mRNAs. Their cargo modulates gene and protein expression in recipient cells. Several lines of evidence indicate that EVs play a role in modifying signal transduction with subsequent physiological changes in neurogenesis, gliogenesis, synaptogenesis and network circuit formation and activity, as well as synaptic pruning and myelination. Several studies demonstrate that neural and non-neural EVs play an important role in physiological and pathological neurodevelopment. The present review discusses the role of EVs in various neurodevelopmental disorders and the prospects of using EVs as disease biomarkers and therapeutics.  相似文献   
195.
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano‐biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles—from self‐assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.  相似文献   
196.
Journal of Computer and Systems Sciences International - The article considers the problem of making multicriteria decisions in which the decision maker (DM) has the opportunity to indicate the...  相似文献   
197.
An addition of boron largely increases the ductility in polycrystalline high-temperature Co–Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ε (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co–17Re–23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ε to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co–17Re–23Cr–1.2Ta–2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0–1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.  相似文献   
198.
Nano crystalline pure and Mg doped ceriaparticles were synthesized by simple chemical co-precipitation method using cerium nitrate hexahydrate as a source material and magnesium nitrate as doping precursor at room temperature. The effect of doping were investigated by X-ray diffraction pattern(XRD), FT-Raman,fourier transform infrared spectroscopy(FTIR), Ultraviolet spectroscopy(UV), photoluminescence spectroscopy(PL), field emission scanning electron microscope(FESEM) and high resolution transmission electron microscopy with energy dispersive spectroscopy (HRTEM &EDS). The X-ray diffraction pattern and FT-Raman studies showed that the prepared samples were nano particulates with cubic fluorite structure. The XRD pattern analysis showed that the size of the particles ranged from 13 to 20?nm, however 4?wt% Mg doping results in reduction of particle size compared with other doping concentrations. The effects of Mg concentration on various structural parameters of the prepared samples were also determined. The slight blue shift observed upon doping in UV–Vis absorption region around 330–360nmrecorded for reduction in particle size. The FTIR unveils the presence of Metal oxygen bonds below 700?cm?1in the prepared samples. All samples showed a broad emission band at 430?nm with linearly increasing intensity with respect to dopant concentrations. The Spherical morphology with weak agglomeration was identified through FESEM and HRTEM analysis. The elemental analysis of Ce, O and Mg were confirmed through EDS analysis.  相似文献   
199.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   
200.
Point centromeres, found in some ascomycete yeasts such Saccharomyces cerevisiae, are very different in structure from the centromeres of other eukaryotes. They are tiny and nonrepetitive and contain only two short conserved sequence motifs. Until recently, point centromeres were thought to have a single evolutionary origin, in the budding yeast family Saccharomycetaceae. Most yeasts outside this family have centromeres that are many kilobases in size. Some have centromeres consisting of a large inverted repeat sequence, others have centromeric clusters of retrotransposons, and a third group including Candida albicans has centromeres with no conserved sequence features. It was recently reported that Scheffersomyces stipitis has point centromeres with a strongly conserved 125-bp core sequence, which is unexpected because Sstipitis is only distantly related to the known point-centromere species. We show here that the 125-bp core sequence is actually part of the long terminal repeat (LTR) of the Ty5-like retrotransposon Tps5, which forms a cluster in the centromeric region of each Sstipitis chromosome. Thus, the LTR of a centromere-associated retrotransposon confers centromere-like mitotic stability when cloned into a plasmid. The centromeric regions of Sstipitis contain three types of Tps5 element (Tps5a, Tps5b, and Tps5c) and a noncoding nonautonomous large retrotransposon derivative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号