首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44193篇
  免费   3914篇
  国内免费   2018篇
电工技术   2482篇
技术理论   2篇
综合类   2505篇
化学工业   7688篇
金属工艺   2608篇
机械仪表   2931篇
建筑科学   3021篇
矿业工程   1296篇
能源动力   1276篇
轻工业   2858篇
水利工程   648篇
石油天然气   2481篇
武器工业   337篇
无线电   5399篇
一般工业技术   5973篇
冶金工业   2476篇
原子能技术   492篇
自动化技术   5652篇
  2024年   245篇
  2023年   876篇
  2022年   1513篇
  2021年   2173篇
  2020年   1573篇
  2019年   1465篇
  2018年   1515篇
  2017年   1547篇
  2016年   1452篇
  2015年   1899篇
  2014年   2261篇
  2013年   2695篇
  2012年   2780篇
  2011年   3155篇
  2010年   2484篇
  2009年   2442篇
  2008年   2456篇
  2007年   2184篇
  2006年   2290篇
  2005年   1837篇
  2004年   1332篇
  2003年   1197篇
  2002年   1124篇
  2001年   981篇
  2000年   948篇
  1999年   996篇
  1998年   835篇
  1997年   713篇
  1996年   630篇
  1995年   526篇
  1994年   408篇
  1993年   277篇
  1992年   228篇
  1991年   205篇
  1990年   169篇
  1989年   155篇
  1988年   101篇
  1987年   88篇
  1986年   57篇
  1985年   51篇
  1984年   37篇
  1983年   37篇
  1982年   29篇
  1981年   23篇
  1980年   26篇
  1979年   17篇
  1978年   15篇
  1976年   18篇
  1975年   10篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Self‐healing triboelectric nanogenerators (TENGs) with flexibility, robustness, and conformability are highly desirable for promising flexible and wearable devices, which can serve as a durable, stable, and renewable power supply, as well as a self‐powered sensor. Herein, an entirely self‐healing, flexible, and tailorable TENG is designed as a wearable sensor to monitor human motion, with infrared radiation from skin to promote self‐healing after being broken based on thermal effect of infrared radiation. Human skin is a natural infrared radiation emitter, providing favorable conditions for the device to function efficiently. The reversible imine bonds and quadruple hydrogen bonding (UPy) moieties are introduced into polymer networks to construct self‐healable electrification layer. UPy‐functionalized multiwalled carbon nanotubes are further incorporated into healable polymer to obtain conductive nanocomposite. Driven by the dynamic bonds, the designed and synthesized materials show excellent intrinsic self‐healing and shape‐tailorable features. Moreover, there is a robust interface bonding in the TENG devices due to the similar healable networks between electrification layer and electrode. The output electric performances of the self‐healable TENG devices can almost restore their original state when the damage of the devices occurs. This work presents a novel strategy for flexible devices, contributing to future sustainable energy and wearable electronics.  相似文献   
992.
2D H‐phase vanadium disulfide (VS2) is expected to exhibit tunable semiconductor properties as compared with its metallic T‐phase structure, and thus is of promise for future electronic applications. However, to date such 2D H‐phase VS2 nanostructures have not been realized in experiment likely due to the polymorphs of vanadium sulfides and thermodynamic instability of H‐phase VS2. Preparation of H‐phase VS2 monolayer with lateral size up to 250 µm, as a new member in the 2D transition metal dichalcogenides (TMDs) family, is reported. A unique growth environment is built by introducing the molten salt‐mediated precursor system as well as the epitaxial mica growth platform, which successfully overcomes the aforementioned growth challenges and enables the evolution of 2D H‐phase structure of VS2. The honeycomb‐like structure of H‐phase VS2 with broken inversion symmetry is confirmed by spherical aberration‐corrected scanning transmission electron microscopy and second harmonic generation characterization. The phase structure is found to be ultra‐stable up to 500 K. The field‐effect device study further demonstrates the p‐type semiconducting nature of the 2D H‐phase VS2. The study introduces a new phase‐stable 2D TMDs materials with potential features for future electronic devices.  相似文献   
993.
崔怀超  袁宏武  韩裕生 《红外》2012,33(1):33-37
在分析红外成像仿真系统研究现状的基础上,研究了典型红外小目标的模型和移 动式滤波跟踪算法。依据飞行器内部构造及工艺材料,并结合空气动力学、物理学以及热辐射的相关理论, 从蒙皮辐射、尾喷焰等方面建立了飞行器的红外辐射模型。针对数字微镜阵列(Digital Mirror Device, DMD) 系统的特点,对模型进行了简化,提高了图像生成速度。最后利用基于数字微镜阵列的成像仿真系统平台 对模型和算法进行了实验验证。实验结果表明,该方法具有图像清晰、信噪比高、生成速度快、管道存储时间小以及 跟踪稳定等特点。  相似文献   
994.
The La(Fe,Si)13‐based compounds have been recently developed as promising negative thermal expansion (NTE) materials by elemental substitution, which show large, isotropic and nonhysteretic NTE properties as well as relatively high electrical and thermal conductivities. In this paper, the La(Fe,Si)13 hydrides are prepared by a novel electrolytic hydriding method. Furthermore, the thermal expansion and magnetic properties of La(Fe,Si)13 hydrides are investigated by the variable‐temperature X‐ray diffraction and physical property measurement system. Fascinatingly, it is found that room‐temperature NTE properties and zero thermal expansion (ZTE) properties with broad operation‐temperature window (20–275 K) have been achieved after electrolytic hydriding. The further magnetic properties combined with theoretical analysis reveal that the improvements of NTE and ZTE properties in the La(Fe,Si)13 hydrides are ascribed to the variations of magnetic exchange couplings after hydrogenation. The present results highlight the potential applications of La(Fe,Si)13 hydrides with room‐temperature NTE and broad operation‐temperature window ZTE properties.  相似文献   
995.
The rapid development of wearable electronics needs flexible conductive materials that have stable electrical properties, good mechanical reliability, and broad environmental tolerance. Herein, ultralow‐density all‐carbon conductors that show excellent elasticity and high electrical stability when subjected to bending, stretching, and compression at high strains, which are superior to previously reported elastic conductors, are demonstrated. These all‐carbon conductors are fabricated from carbon nanotube forms, with their nanotube joints being selectively welded by amorphous carbon. The joint‐welded foams have a robust 3D nanotube network with fixed nodes and mobile nanotube segments, and thus have excellent electrical and mechanical stabilities. They can readily scale up, presenting a new type of nonmetal elastic conductor for many possible applications.  相似文献   
996.
Luminescent materials with thermally activated delayed fluorescence (TADF) can harvest singlet and triplet excitons to afford high electroluminescence (EL) efficiencies for organic light‐emitting diodes (OLEDs). However, TADF emitters generally have to be dispersed into host matrices to suppress emission quenching and/or exciton annihilation, and most doped OLEDs of TADF emitters encounter a thorny problem of swift efficiency roll‐off as luminance increases. To address this issue, in this study, a new tailor‐made luminogen (dibenzothiophene‐benzoyl‐9,9‐dimethyl‐9,10‐dihydroacridine, DBT‐BZ‐DMAC) with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc. It shows aggregation‐induced emission, prominent TADF, and interesting mechanoluminescence property. Doped OLEDs of DBT‐BZ‐DMAC show high peak current and external quantum efficiencies of up to 51.7 cd A?1 and 17.9%, respectively, but the efficiency roll‐off is large at high luminance. High‐performance nondoped OLED is also achieved with neat film of DBT‐BZ‐DMAC, providing excellent maxima EL efficiencies of 43.3 cd A?1 and 14.2%, negligible current efficiency roll‐off of 0.46%, and external quantum efficiency roll‐off approaching null from peak values to those at 1000 cd m?2. To the best of the authors' knowledge, this is one of the most efficient nondoped TADF OLEDs with small efficiency roll‐off reported so far.  相似文献   
997.
The cell membrane is the most important protective barrier in living cells and cell membrane targeted therapy may be a high‐performance therapeutic modality for tumor treatment. Here, a novel charge reversible self‐delivery chimeric peptide C16–PRP–DMA is developed for long‐term cell membrane targeted photodynamic therapy (PDT). The self‐assembled C16–PRP–DMA nanoparticles can effectively target to tumor by enhanced permeability and retention effect without additional carriers. After undergoing charge reverse in acidic tumor microenvironment, C16–PRP–DMA inserts into the tumor cell membrane with a long retention time of more than 14 h, which is very helpful for in vivo applications. It is found that under light irradiation, the reactive oxygen species generated by the inserted C16–PRP–DMA would directly disrupt cell membrane and rapidly induce cell necrosis, which remarkably increases the PDT effect in vitro and in vivo. This novel self‐delivery chimeric peptide with a long‐term cell membrane targeting property provides a new prospect for effective PDT of cancer.  相似文献   
998.
Black phosphorus (BP) has been considered as a promising two‐dimensional (2D) semiconductor beyond graphene owning to its tunable direct bandgap and high carrier mobility. However, the hole‐transport‐dominated characteristic limits the application of BP in versatile electronics. Here, we report a stable and complementary metal oxide semiconductor (COMS) compatible electron doping method for BP, which is realized with the strong field‐induced effect from the K+ center of the silicon nitride (SixNy). An obvious change from pristine p‐type BP to n type is observed after the deposit of the SixNy on the BP surface. This electron doping can be kept stable for over 1 month and capable of improving the electron mobility of BP towards as high as ~176 cm2 V–1 s–1. Moreover, high‐performance in‐plane BP p‐n diode and further logic inverter were realized by utilizing the n‐doping approach. The BP p‐n diode exhibits a high rectifying ratio of ~104. And, a successful transfer of the output voltage from “High” to “Low” with very few voltage loss at various working frequencies were also demonstrated with the constructed BP inverter. Our findings paves the way for the success of COMS compatible technique for BP‐based nanoelectronics.  相似文献   
999.
Monolayer 2D MoS2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS2 has minimal large‐scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain‐dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (≈19 nm) of MoS2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure–PL property correlations of sub‐20 nm MoS2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics.  相似文献   
1000.
With the rapid development of online to offline economy, new services compositions would take up a great part in the satellite communication. More and more new services compositions request more bandwidth and network resources, which lead to serious traffic congestion and low channel utilization. Suffering from isolated link connection and changeable delay under the satellite environment, current bandwidth allocation schemes could not satisfy with the demand of low delay and high assess rate for new satellite services. This paper focuses on bandwidth allocation method for satellite communication services compositions. The novel models of services compositions with single‐hop Poisson distribution are designed to simulate original traffic arrival. Isolated independent coefficients take an original distribution to adapt to isolated disconnections. Services queue waiting time would be judged by acceptable delay threshold. Models provide new services compositions with more precise arrival distributions. In order to improve traffic congestion, the method combined services models, and a network performance is proposed. Optimal reserved bandwidth is set according to the priority and arrival distribution of different services compositions, which classify services with feedback transmission performance. We design minimum fuzzy delay tolerant intervals to calculate delay tolerant threshold, which adapt random delay changes in the services network with delay tolerant features. The simulation in OPNET demonstrates that the proposed method has a better performance of queuing delay by 16.3%, end‐to‐end delay by 18.7%, and bandwidth utilization by 13.2%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号