首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   16篇
电工技术   7篇
化学工业   178篇
机械仪表   5篇
建筑科学   2篇
能源动力   5篇
轻工业   4篇
无线电   6篇
一般工业技术   29篇
冶金工业   4篇
原子能技术   3篇
自动化技术   16篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   1篇
  2019年   4篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   13篇
  2013年   11篇
  2012年   9篇
  2011年   11篇
  2010年   13篇
  2009年   19篇
  2008年   15篇
  2007年   11篇
  2006年   17篇
  2005年   10篇
  2004年   6篇
  2003年   18篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1977年   1篇
排序方式: 共有259条查询结果,搜索用时 31 毫秒
51.
Spinel ferrites are an important class of materials, whose magnetic properties are of interest for industrial applications. The antiphase boundaries (APBs) that are commonly observed in spinel ferrite films can hinder their applications in spintronic devices and sensors, as a result of their influence on magnetic degradation and magnetoresistance of the materials. However, it is challenging to correlate magnetic properties with atomic structure in individual APBs due to the limited spatial resolution of most magnetic imaging techniques. Here, aberration-corrected scanning transmission electron microscopy and electron energy-loss magnetic chiral dichroism are used to measure the atomic structure and electron magnetic circular dichroism (EMCD) of a single APB in NiFe2O4 that takes the form of a rock salt structure interlayer and is associated with a crystal translation of (1/4)a[011]. First principles density functional theory calculations are used to confirm that this specific APB introduces antiferromagnetic coupling and a significant decrease in the magnitude of the magnetic moments, which is consistent with an observed decrease in EMCD signal at the APB. The results provide new insight into the physical origins of magnetic coupling at an individual defect on the atomic scale.  相似文献   
52.
A new foam injection‐molding technology was developed to produce microcellular foams without using supercritical fluid (SCF) pump units. In this technology, physical blowing agents (PBA), such as nitrogen (N2) and carbon dioxide (CO2), do not need to be brought to their SCF state. PBAs are delivered directly from their gas cylinders into the molten polymer through an injector valve, which can be controlled by a specially designed screw configuration and operation sequence. The excess PBA is discharged from the molten polymer through a venting vessel. Alternatively, additional PBA is introduced through the venting vessel when the polymer is not saturated with PBA. The amount of gas delivered into the molten polymer is controlled by the gas dosing time of the injector valve, the secondary reducing pressure of the gas cylinder and the outlet (back) pressure of the venting vessel. Microcellular polypropylene foams were prepared using the developed foam injection‐molding technology with 2–6 MPa CO2 or 2–8 MPa N2. High expansion foams with an average cell size of less than 25 μm were prepared. The developed technology dispels arguments for the necessity to pressurize N2 or CO2 to the SCF to prepare microcellular foams. POLYM. ENG. SCI., 57:105–113, 2017. © 2016 Society of Plastics Engineers  相似文献   
53.
The phase‐separation mechanism during porous membrane formation by the dry‐cast process was investigated by the light‐scattering method in poly(methyl methacrylate)/ethyl acetate (EA)/2‐methyl‐2,4‐pentanediol system. The evaporation of EA from the cast solution induced the phase separation and thus the porous membrane was obtained. By the light‐scattering measurement on the phase‐separation kinetics, the phase separation was found to occur by a spinodal decomposition mechanism. As the amount of nonsolvent in the cast solution decreased, the structure growth rate decreased and the growth stopped soon. The obtained porous structure was isotropic rather than asymmetric. The average interpore distances obtained from the SEM observation roughly agreed with the final constant interphase periodic distances measured by the light‐scattering method. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 10: 3205–3209, 2002  相似文献   
54.
N-(α-Carboxyalkyl)acrylamide telomer-type surfactants (xC n−1 AmAc where n is alkyl chain length=6, 8, 10, 12; and x is degree of polymerization=3.3–13.1) were synthesized by the telomerization of monomer (C n−1 AmAc) in the presence of the corresponding alkanethiol as a chain transfer agent and then investigated for their surface-active properties. xC n−1 AmAc telomers lowered the surface tension of aqueous solutions that were at pH 9–10. The critical micelle concentrations (CMC) of the telomers were lower than those of the monomers with the same alkyl chain length, and the CMC values shifted to lower concentrations with both increasing alkyl chain length and polymerization degree. xC9AmAc with x=3.3–6.3 gave the highest efficiencies in lowering the surface tension. The cross-sectional molecular areas per molecule of xC n−1 AmAc telomers were smaller than the values estimated on the assumption that they are assemblies of C n−1 AmAc monomer units. The foaming abilities and the foam stabilities were both in the orders of xC7AmAc>xC9AmAc>xC5AmAc>xC11AmAc. Mixtures of aqueous solutions of xC n−1 AmAc telomers and toluene formed oil-in-water emulsions. The emulsion-stabilizing abilities were in the orders of xC7AmAc>xC5AmAc>xC9AmAc=xC11AmAc. The addition of Ca2+ to the mixed solutions of telomers and toluene resulted in formation of water-in-oil type emulsions. Thus, the surface-active properties of the telomers were influenced significantly by the alkyl chain length and the polymerization degree of the telomers. In addition, these properties could be correlated with the hydrophilic-lipophilic balance (HLB); the highest surface activities were observed by using xC n−1 AmAc with HLB of 14–18.  相似文献   
55.
Biodegradable polyester blends were prepared from poly(L ‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) (50/50) by melt‐blending, and the effects of processing conditions (shear rate, time, and strain) of melt‐blending on proteinase‐K‐ and lipase‐catalyzed enzymatic degradability were investigated using gravimetry, differential scanning calorimetry, and scanning electron microscopy. The proteinase‐K‐catalyzed degradation rate of the blend films increased and leveled off with increasing the shear rate, time, or strain for melt‐blending, except for the shortest shear time of 60 s. The optimal processing conditions of melt‐blending giving the maximum rate of lipase‐catalyzed degradation were 9.6 × 102 s?1 and 180 s, whereas a deviation from these conditions caused a reduction in lipase‐catalyzed enzymatic degradation rate. At the highest shear rate of 2.2 × 103 s?1, PCL‐rich phase was continuous in the blend films, irrespective of the shear time (or shear strain), whereas PLLA‐rich phase changed from dispersed to continuous by increasing the shear time (or shear strain). This study revealed that the biodegradability of PLLA/PCL blend materials can be manipulated by altering the processing conditions of melt‐blending (shear rate, time, or strain) or the sizes and morphology of PLLA‐rich and PCL‐rich domains. The method reported in the present study can be utilized for controlling the biodegradability of other biodegradable polyester blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 831–841, 2007  相似文献   
56.
Amorphous poly(L ‐lactide) (PLLA) composite films with titanium dioxide (TiO2) particles were prepared by solution‐casting using methylene chloride as a solvent, followed by quenching from the melt. The effects of surface treatment, volume fraction, size, and crystalline type of the TiO2 particles on the mechanical properties and enzymatic hydrolysis of the composite films were investigated. The tensile strength of the PLLA composite films containing TiO2 particles except for anatase‐type ones with a mean particle size of 0.3–0.5 μm was lowered and the Young's modulus became higher with increasing the content of TiO2 particles. The tensile strength of the composite films containing anatase‐type TiO2 with a mean particle size of 0.3–0.5 μm at contents of 20 wt % or less was almost the same as that of the pure PLLA film. The enzymatic hydrolysis of PLLA matrix was accelerated by the addition of the hydrophilic anatase‐type TiO2 particles (nontreated or Al2O3 treated) with a mean particle size of 0.3–0.5 μm at relatively high contents such as 20 wt %. On the other hand, the enzymatic hydrolysis of PLLA matrix was inhibited by composite formation with the hydrophobic rutile‐type TiO2 particles (Al2O3‐stearic acid treated, or ZrO2‐Al2O3‐stearic acid treated). These results suggest that the mechanical properties and enzymatic hydrolyzability of the PLLA can be controlled by the kind and amount of the added TiO2 particles. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 190–199, 2005  相似文献   
57.
A new preparation method for polymer inclusion membrane (PIM) was developed. The preparation method—called post‐treatment method—is very convenient to prepare a hollow fiber PIM. Using this method, a commercial cellulose triacetate (CTA) hollow fiber membrane can be easily converted into a hollow fiber PIM. Thus, a CTA hollow fiber membrane was allowed to swell in 2‐nitrophenyl‐n‐octyl ether (NPOE) in the presence of chloroform as a solvent for CTA and N,N,N′,N′‐tetraoctyl‐3‐oxapentane diamide (TODGA) as a carrier. After evaporating chloroform, a hollow fiber PIM containing NPOE and TODGA was obtained. The result of the transport experiment of cerium(III) ions using the hollow fiber PIM showed that cerium ions were effectively transported from the feed solution to the strip solution through the hollow fiber PIM, indicating that the hollow fiber PIM was successfully prepared using the post‐treatment method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4372–4377, 2006  相似文献   
58.
In order to reduce the internal stress in a cured epoxy resin, the submicron polymer particles were dispersed therein prior to curing. For this purpose, four kinds of poly(butyl acrylate), poly(methyl methacrylate) core-shell particles were prepared by seeded emulsion polymerization for methyl methacrylate with poly(butyl acrylate) seed particles having different particle diameter, and subsequently were powdered by drying at room temperature. It was observed by SEM that poly(butyl acrylate) particles as core were dispersed in the cured epoxy matrix. Poly(methyl methacrylate) as shell seems to dissolve in the matrix. The internal stress of cured epoxy resin decreased with the modification of the particles and the tendency was enhanced with a decreasing in the particle diameter.  相似文献   
59.
The effect of diluents on isotactic polypropylene (iPP) membrane formation via thermally induced phase separation was investigated. The diluents were methyl salicylate (MS), diphenyl ether (DPE), and diphenylmethane (DPM). The cloud-point curve was shifted to a lower temperature in the order iPP–MS, iPP–DPE, and iPP–DPM, whereas the crystallization temperature was not influenced so much by diluent type. Droplet-growth processes were investigated under two conditions: quenching the polymer solution at the desired temperature and cooling at a constant rate. Although droplet sizes were in the order iPP–MS, iPP–DPE, and iPP–DPM in both cases, the difference was more pronounced with the constant cooling rate condition. Scanning electron microscopy indicated that interconnected structures were obtained when the polymer solution was quenched in ice water. The effect of the diluents on these structures was observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 169–177, 2001  相似文献   
60.
Recently, nano-filtration membranes are made by the reaction between a reactive functional group on the surface of a tight ultrafiltration membrane and a charged branched polymer. This reaction makes the selective layer of the nanofiltration membrane, which plays an essential role in membrane performance. A molecular dynamics simulation with a reactive force field was used to investigate the reaction of carboxylated polyethersulfone as the functional group of the ultrafiltration membrane with polyethyleneimine. Experimental elucidation of the reaction between the PEI amine and carboxyl groups is challenging, and an MD simulation was thus employed. Furthermore, the simulation results show that the PEI and carboxylated polyethersulfone polymers react with each other in a temperature-dependent manner. While no reaction occurs at 298 K, carboxylated polyethersulfone and PEI begin to react when the temperature is increased from 298 to 323 K. Furthermore, a reversible reaction was observed with a subsequent increase in temperature to 353 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号