首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   11篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   59篇
金属工艺   5篇
机械仪表   3篇
建筑科学   4篇
能源动力   31篇
轻工业   14篇
水利工程   1篇
石油天然气   1篇
无线电   27篇
一般工业技术   44篇
冶金工业   12篇
原子能技术   2篇
自动化技术   50篇
  2024年   5篇
  2023年   10篇
  2022年   24篇
  2021年   14篇
  2020年   16篇
  2019年   14篇
  2018年   17篇
  2017年   12篇
  2016年   11篇
  2015年   13篇
  2014年   11篇
  2013年   18篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
91.
92.
In this study, Computational Fluid Dynamics(CFD) is used to investigate and compare the impact of bioreactor parameters(such as its geometry, medium flow-rate, scaffold configuration) on the local transport phenomena and, hence, their impact on human mesenchymal stem cell(hM SC) expansion. The geometric characteristics of the TissueFlex174;(Zyoxel Limited, Oxford, UK) microbioreactor were considered to set up a virtual bioreactor containing alginate(in both slab and bead configuration) scaffolds. The bioreactor and scaffolds were seeded with cells that were modelled as glucose consuming entities. The widely used glucose medium, Dulbecco's Modified Eagle Medium(DMEM), supplied at two inlet flow rates of 25 and 100 μl·h~(-1), was modelled as the fluid phase inside the bioreactors. The investigation, based on applying dimensional analysis to this problem, as well as on detailed three-dimensional transient CFD results, revealed that the default bioreactor design and boundary conditions led to internal and external glucose transport, as well as shear stresses, that are conducive to h MSC growth and expansion. Furthermore, results indicated that the ‘top-inout' design(as opposed to its symmetric counterpart) led to higher shear stress for the same media inlet rate(25 μl·h~(-1)), a feature that can be easily exploited to induce shear-dependent differentiation. These findings further confirm the suitability of CFD as a robust design tool.  相似文献   
93.
94.
We have investigated devitrification of glasses within infrared transmitting xSbSI–(100 ? x)Sb2S3 pseudo‐binary series, which forms SbSI and Sb2S3 ferroelectric crystal phases. Differential scanning calorimetry (DSC) and X‐ray powder diffraction results show unusual behavior for the formation of the SbSI phase, which occurs by two parallel processes: one‐dimensional crystallization at low temperature which starts from the sample surface, and three‐dimensional bulk crystallization that continues the transformation to crystalline state at higher temperatures. The ratio of the intensities of the high‐temperature exothermal peak to the low‐temperature peak in DSC scans increases as the particle size and heating rate are increased. In contrast to the SbSI phase, the temperature of crystallization for the Sb2S3 phase does not depend on the particle size. Models are proposed for the origin of the various crystallization mechanisms.  相似文献   
95.
A simple and sensitive method based on square wave voltammetry (SWV) at single-walled carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of adenine and adenosine-5′-monophosphate (5′-AMP). The modified electrode exhibits remarkable electrocatalytic properties towards adenine and 5′-AMP oxidation with a peak potential of ∼850 and 1165 mV respectively. Linear calibration curves are obtained over the concentration range of 5-100 nM for adenine and 10-100 nM for 5′-AMP with sensitivity of 677 and 476 nA nM−1 for adenine and 5′-AMP respectively. The limit of detection for adenine and 5′-AMP was found to be 37 × 10−10 M and 76 × 10−10 M, respectively. The effect of pH revealed that the oxidation of adenine and 5′-AMP at SWNT modified EPPGE involved equal number of electrons and protons. The modified electrode exhibited high stability and reproducibility.  相似文献   
96.
The present paper reports the effect of graphitic nanofibres (GNFs) for improving the desorption kinetics of LiMg(AlH4)3 and LiAlH4. LiMg(AlH4)3 has been synthesized by mechano-chemical metathesis reaction involving LiAlH4 and MgCl2. The enhancement in dehydrogenation characteristics of LiMg(AlH4)3 has been shown to be higher when graphitic nanofibres (GNFs) were used as catalyst. Out of two different types of nanofibres namely planar graphitic nanofibre (PGNF) and helical graphitic nanofibre (HGNF), the latter has been found to act as better catalyst. We observed that helical morphology of fibres improves the desorption kinetics and decreases the desorption temperature of both LiMg(AlH4)3 and LiAlH4. The desorption temperature for 8 mol% HGNF admixed LiAlH4 gets lowered from 159 °C to 128 °C with significantly faster kinetics. In 8 mol% HGNF admixed LiMg(AlH4)3 sample, the desorption temperature gets lowered from 105 °C to ∼70 °C. The activation energy calculated for the first step decomposition of LiAlH4 admixed with 8 mol% HGNF is ∼68 kJ/mol, where as that for pristine LiAlH4 it is 107 kJ/mol. The activation energy calculated for as synthesized LiMg(AlH4)3 is ∼66 kJ/mol. Since the first step decomposition of LiMg(AlH4)3 occurs during GNF admixing, the activation energy for initial step decomposition of GNF admixed LiMg(AlH4)3 could not be estimated.  相似文献   
97.
Milk fat stearins and oleins were blended with high‐ and low‐melting natural fats to produce plastic fats, vanaspati substitute and confectionery fats. Margarines of improved nutritional value were also formulated. Fractionation was carried out using acetone, hexane, and isopropyl alcohol. The yield (wt‐%) of high‐melting stearin (HMS) from acetone and IPA was 13.0 ± 0.2 to 13.3 ± 0.1 after crystallization for 24 h at 20 °C. The melting point of the products was 49.0 ± 0.5 to 49.8 ± 0.6 °C. However, in hexane the yield of HMS was 12.2 ± 0.2% at 10 °C. The olein fractions were further fractionated at 10 °C from acetone and IPA, and at 0 °C from hexane, to obtain superoleins and low‐melting stearins (LMS). HMS fractions were blended with rice bran oil and cottonseed oil at the ratio 70 : 30 (wt/wt), and the superoleins were blended with sal fat and palm stearin at the ratios 40 : 60, 30 : 70 and 20 : 80 (wt/wt). The blends were interesterified (product melting point: 22.7 ± 0.04 to 39.3 ± 0.10 °C) chemically and enzymatically to prepare margarine. The penetration values (in 0.1 mm) of these margarines were noted to be 112 ± 1.52 to 145 ± 0.00.  相似文献   
98.
Applied Intelligence - With the spread of COVID-19, there is an urgent need for a fast and reliable diagnostic aid. For the same, literature has witnessed that medical imaging plays a vital role,...  相似文献   
99.
100.
This experimental analysis was performed with the aim to melt the ice into hot water at very high altitude regions such as Leh Ladakh. Three different designs of ice‐chamber were used to melt the ice with direct heating in minimum time. The radiations were focused on the receiver with the help of 1 m2 Scheffler solar concentrator exposed to the atmospheric situations of NIT Kurukshetra. The Scheffler solar concentrator was fabricated with fiber‐reinforced plastic material. The fabrication process is discussed in detail. The results obtained from the design showed that the ice frozen at ?5°C completely melted, converting into water. The maximum temperature of water attained in the ice‐chamber with receiver 1 (circular plate with fins), 2 (CPC with fins), and 3 (copper crucible) was 57.7°C, 64.3°C, and 67.4°C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号