首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2937篇
  免费   108篇
  国内免费   14篇
电工技术   216篇
综合类   10篇
化学工业   884篇
金属工艺   104篇
机械仪表   80篇
建筑科学   61篇
能源动力   159篇
轻工业   319篇
水利工程   2篇
石油天然气   4篇
无线电   144篇
一般工业技术   635篇
冶金工业   122篇
原子能技术   80篇
自动化技术   239篇
  2024年   5篇
  2023年   18篇
  2022年   38篇
  2021年   53篇
  2020年   34篇
  2019年   43篇
  2018年   57篇
  2017年   51篇
  2016年   60篇
  2015年   53篇
  2014年   96篇
  2013年   229篇
  2012年   138篇
  2011年   219篇
  2010年   167篇
  2009年   178篇
  2008年   187篇
  2007年   157篇
  2006年   140篇
  2005年   133篇
  2004年   116篇
  2003年   104篇
  2002年   102篇
  2001年   70篇
  2000年   54篇
  1999年   46篇
  1998年   39篇
  1997年   46篇
  1996年   40篇
  1995年   33篇
  1994年   52篇
  1993年   33篇
  1992年   29篇
  1991年   19篇
  1990年   21篇
  1989年   21篇
  1988年   21篇
  1987年   17篇
  1986年   11篇
  1985年   20篇
  1984年   11篇
  1983年   24篇
  1982年   15篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
排序方式: 共有3059条查询结果,搜索用时 15 毫秒
101.
The effect of heat sealing temperature on the mechanical properties and morphology of OPP/CPP laminate films was investigated. The laminated films were placed in an impulse type heat sealing machine with both CPP sides facing each other. The temperatures investigated ranged from 100 to 250°C. T‐peel and tensile tests in combination with SEM were used to characterize the heat seals. A minimum seal initiation temperature of 120°C was identified for OPP/CPP laminate heat sealing. Peel strength increased sharply from zero at 110°C to maximum at 120°C, after which a gradual decrease was observed. Tensile strength initially increased until 120°C, after which it gradually decreased until 170°C and assumed a constant value beyond that. The initial rise has been associated to cold crystallization, while the reduction between 120°C and 170°C was due to relaxation in molecular orientation. Beyond 170°C, all the orientation in the laminate has been lost so orientation effects are nullified. Morphological studies with SEM revealed that seals were partially formed at lower temperatures, while the laminates were totally fused together at high temperatures, with intermediate temperatures showing properties that lie in between. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 753–760, 2005  相似文献   
102.
We have prepared novel gas diffusion electrodes for polymer electrolyte fuel cells (PEFC) using new organic/inorganic hybrid electrolytes. The catalyst layers were prepared by mixing 3-(trihydroxysilyl)-1-propanesulfonic acid [(THS)Pro-SO3H], 1,8-bis(triethoxysilyl) octane (TES-Oct), Pt loaded carbon black (Pt-CB) and water, followed by a sol-gel reaction. It was found that addition of uncatalyzed carbon black (u-CB) into the cathode catalyst layer enhanced the performance at high current density region, due to an increase in the gas diffusion rate. The optimum volume ratio of u-CB/Pt-CB was found to be 0.1, at which the gas diffusivity and the catalyst utilization are well balanced.  相似文献   
103.
Rapid pyrolysis was conducted in a drop tube reactor using seven coals under various operating conditions. In addition to dense char, porous chars (network char and cenospheric char) were formed by the rapid pyrolysis under certain conditions. Porous char was mainly composed of film-like carbon and skeleton carbon. The pyrolyzed coal char particles were characterized in detail. Morphology and bulk density of porous char were quite different from the dense char formed under the same conditions, but elemental composition and BET surface area were similar to each other. CO2 gasification reactivity of porous char was lower than dense char in the later gasification stage, and this was ascribed to the low reactivity of skeleton carbon.  相似文献   
104.
Reduction of flash generated in a gas vent is of great concern for manufacturers of electronic parts. The present study proposes a theoretical model for flash generation through consideration of flow characteristics in a gas vent. The model predicts the factors controlling flash, i.e., material parameters such as zero‐shear viscosity, crystallization temperature, thermal conductivity, and heat capacity, and process parameters such as injection and mold wall temperatures, packing pressure, and the clearance of a gas vent. On the other hand, we measure the amount of flash generated in the molding of poly(phenylene sulfide) (PPS) composites containing glass fiber and spherical fillers (CaCO3 or Al2O3). Flash reduces with decreasing size of spherical fillers. These experimental data are successfully interpreted using the flash model. Polym. Eng. Sci., 45:198–206, 2005. © 2005 Society of Plastics Engineers  相似文献   
105.
A three‐dimensional flow simulation for epoxy casting has been developed. A control‐volume‐based finite‐element method is employed, containing a conservative upwind formulation for the advection terms and equal order interpolations for all variables. This simulation predicts the non‐isothermal and reactive flow behavior under the gravity. The viscosity and reaction‐rate parameters were estimated by using a dynamic rheometer and a differential scanning calorimeter. The predicted flow front advancement and temperature profiles in the calculation domain similar to the mold cavity were in close agreement with the corresponding experimental results. The variation of epoxy surface configuration with flow rate also showed the same tendency between the prediction and the experiment. This simulation seems to be applicable not only to the epoxy casting, but also to other molding processes of various thermoset resins. POLYM. ENG. SCI. 45:364–374, 2005. © 2005 Society of Plastics Engineers.  相似文献   
106.
Fracture toughness of adjacent flow weld lines, defined as weld lines that occur when two flow fronts meet and continue to flow together in the same direction (meld line or hot weld line), was evaluated by the single‐edge notched‐bend (SENB) method using three differently‐shaped obstructive pins. Although the fracture toughness varied depending upon the shapes of the pin, the values could be standardized as the distance from the meeting point of the two flow fronts flowing around the pin. The fracture toughness decreased drastically from the meeting point along the weld line and then slightly increased. These characteristic features could be explained by flow‐induced molecular orientation at the weld line interface. The molecules around the meeting point that were initially oriented parallel to the weld line due to fountain flow were able to relax, and then entanglement across the weld line interface developed because the flow stopped in the middle of the filling process, resulting in high fracture toughness. In contrast, the material at the downstream side of the weld line continued flowing during the filling process, being stretched along the flow direction. So, the molecular orientation at this area could not relax. In addition, the V‐notch shape, i.e., the depth and length at the surface of the weld line, which also varied depending on the shape of the obstacles, was considered to be identical when the meeting point was allowed to be a datum point. Thus, the meeting point was found to be a significant factor when the properties of weld lines are investigated. POLYM. ENG. SCI., 45:1059–1066, 2005. © 2005 Society of Plastics Engineers  相似文献   
107.
To theoretically explore amorphous materials with a sufficiently low dielectric loss, which are essential for next-generation communication devices, the applicability of a nonequilibrium molecular dynamics simulation employing an external alternating electric field was examined using alkaline silicate glass models. In this method, the dielectric loss is directly evaluated as the phase shift of the dipole moment from the applied electric field. This method enabled us to evaluate the dielectric loss in a wide frequency range from 1 GHz to 10 THz. It was observed that the dielectric loss reaches its maximum at a few THz. The simulation method was found to qualitatively reproduce the effects of alkaline content and alkaline type on the dielectric loss. Furthermore, it reasonably reproduced the effect of mixed alkalines on the dielectric loss, which was observed in our experiments on sodium and/or potassium silicate glasses. Alkaline mixing was thus found to reduce the dielectric loss.  相似文献   
108.
Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.  相似文献   
109.
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and has a unique metastatic route using ascites, known as the transcoelomic root. However, studies on ascites and contained cellular components have not yet been sufficiently clarified. In this review, we focus on the significance of accumulating ascites, contained EOC cells in the form of spheroids, and interaction with non-malignant host cells. To become resistant against anoikis, EOC cells form spheroids in ascites, where epithelial-to-mesenchymal transition stimulated by transforming growth factor-β can be a key pathway. As spheroids form, EOC cells are also gaining the ability to attach and invade the peritoneum to induce intraperitoneal metastasis, as well as resistance to conventional chemotherapy. Recently, accumulating evidence suggests that EOC spheroids in ascites are composed of not only cancer cells, but also non-malignant cells existing with higher abundance than EOC cells in ascites, including macrophages, mesothelial cells, and lymphocytes. Moreover, hetero-cellular spheroids are demonstrated to form more aggregated spheroids and have higher adhesion ability for the mesothelial layer. To improve the poor prognosis, we need to elucidate the mechanisms of spheroid formation and interactions with non-malignant cells in ascites that are a unique tumor microenvironment for EOC.  相似文献   
110.
Dense PbTiO3 ceramics consisting of submicrometer-sized grains were prepared using the spark-plasma-sintering (SPS) method. Hydrothermally prepared PbTiO3 (0.1 μm) was used as a starting powder. The powder was densified to ≳98% of the theoretical X-ray density by the SPS process. The average grain size of the spark-plasma-sintered ceramics (SPS ceramics) was ≲1 μm, even after sintering at 900°–1100°C, because of the short sintering period (1–3 min). The measured permittivity of the SPS ceramics showed almost no frequency dependence over the range 101–106 Hz, mainly because pores were absent from the ceramics. The coercive field of the SPS ceramics was somewhat higher than that of conventionally sintered ceramics, which could be attributed to the small-grained microstructures of the SPS ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号