首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   41篇
  国内免费   9篇
电工技术   14篇
综合类   2篇
化学工业   148篇
金属工艺   20篇
机械仪表   29篇
建筑科学   32篇
矿业工程   1篇
能源动力   110篇
轻工业   53篇
水利工程   1篇
石油天然气   5篇
无线电   60篇
一般工业技术   177篇
冶金工业   56篇
原子能技术   7篇
自动化技术   121篇
  2024年   4篇
  2023年   13篇
  2022年   44篇
  2021年   63篇
  2020年   30篇
  2019年   34篇
  2018年   28篇
  2017年   38篇
  2016年   43篇
  2015年   19篇
  2014年   30篇
  2013年   53篇
  2012年   42篇
  2011年   58篇
  2010年   51篇
  2009年   40篇
  2008年   28篇
  2007年   36篇
  2006年   23篇
  2005年   15篇
  2004年   14篇
  2003年   20篇
  2002年   10篇
  2001年   7篇
  2000年   15篇
  1999年   18篇
  1998年   11篇
  1997年   6篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   4篇
  1985年   5篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有836条查询结果,搜索用时 0 毫秒
31.
The synthesis and investigations of the mesomorphic, thermotropic, thermo-morphologic, and thermo-optical properties of two new salicylaldimine compounds, synthesized by our group, are reported in this work. Temperature transformations of specific textures of the smectic C mesophase, taking place in these compounds, and thermo-morphologic and thermotropic properties of the biphasic regions for direct and reverse phase transitions have been investigated. Temperature hysteresis and enlargement of the biphasic regions have been found. The character of texture transformations and temperature behavior of the optical birefringence indicate to the first order a smectic C–isotropic liquid-phase transition in these salicylaldimine compounds.  相似文献   
32.
Tolerancing decisions can profoundly impact the quality and cost of the mechanism. To evaluate the impact of tolerance on mechanism quality, designers need to simulate the influences of tolerances with respect to the functional requirements. This paper proposes a mathematical formulation of tolerance analysis which integrates the notion of quantifier: “For allacceptable deviations (deviations which are inside tolerances),there existsa gap configurationsuch asthe assembly requirements and the behavior constraints are verified” & “For allacceptable deviations (deviations which are inside tolerances), andfor alladmissible gap configurations, the assembly and functional requirements and the behavior constraints are verified”. The quantifiers provide a univocal expression of the condition corresponding to a geometrical product requirement. This opens a wide area for research in tolerance analysis. To solve the mechanical problem, an approach based on optimization is proposed. Monte Carlo simulation is implemented for the statistical analysis. The proposed approach is tested on an over-constrained mechanism.  相似文献   
33.
It is important to give water-repellent and antibacterial properties to the acrylonitrile butadiene styrene (ABS) surfaces of the hearing aids. In this study, the sol–gel Si and sol–gel Ti solutions were prepared from the reactions of silicon ethoxide, titanium butoxide and methacrylic acid. The catalyst and Dynasylan F8815 were added to the sol–gel solutions to give hydrophobic properties onto the ABS surfaces. Additionally, silver nanoparticles were synthesized by nanosecond laser and added to the coating solutions to give extra antibacterial properties. The surfaces of the ABS targets were coated using the sol–gel dip coating and pulsed laser deposition techniques. The coatings with good adhesion between film and substrate and good water-repellent properties were achieved. The average contact angles for the coated ABS surfaces were measured in the range between 120 and 125 degrees. The obtained sol–gel materials and produced thin films onto the ABS surfaces were also analyzed in terms of the antibacterial properties. The highly antibacterial properties were observed in the sol–gel solutions and the thin films.  相似文献   
34.
Preceramic polymer resins are attractive for the 3D printing of net-shaped ceramic components. Recently various processes have been demonstrated for 3D printing of polymer-derived ceramics (PDCs). Ultimately in these processes, the process outcomes strongly depend on the process parameters. In particular, for PDCs the ceramic density, and ceramic yield are affected by the catalyst concentration and cross-linking duration. Here, we use thermal analysis and FTIR to quantify the interrelation of the process parameters on the process outcome for polysilazanes and demonstrate 3D printing of PDC components based on the best-identified process parameters. The results of this work can be used as guidelines for future additive manufacturing of PDCs.  相似文献   
35.
The graft copolymerization of methyl acrylate (MA) onto chitosan in aqueous medium was investigated using potassium persulfate (KPS) as initiator. The grafting conditions were optimized by studying the effects of the polymerization variables (the initiator concentration, the ratio of monomer to chitosan, and reaction temperature) on the percentage of grafting (PG). PG was found to depend on these variables, and the highest grafting percentage (256 %) could be obtained at chitosan = 1 g, KPS = 4.5 × 10?3 M, methyl acrylate monomer = 6 g, T = 60 °C and t = 180 min. The graft copolymer was characterized by Fourier transform infrared spectra analysis, thermogravimetry (differential thermogravimetry, differential scanning calorimetric), X-ray powder diffraction as well as CP-MAS 13C NMR spectroscopy. These analyses are highly confirmed the formation of poly(methyl acrylate) grafted chitosan (PMAGC). Furthermore, the gelation of the grafted polymers (PG 68, 122, 218 and 256 %) in distilled water has been studied, and the results revealed that the percentage of swelling number increase with increasing PG of the polymers. Controlled release of niacin (vitamin B3) from the hydrogel of the grafted polymers (PG 68, 122 and 256 %) in aqueous medium has been studied using ultraviolet absorption to follow quantities released at different times (for each experiment: PMAGC 100 mg, niacin 2.46 mg, distilled water 100 ml). The study was repeated again with same conditions except the using of 4.92 mg of niacin instead of 2.46 mg (PG of the grafted polymer is 256 %). The diffusion coefficient (D, cm2/h) of niacin from the hydrogel of the grafted polymer (PG 256 %) was calculated depending on Higuchi model (diffusion coefficient of the first load is 0.00194 cm2/h while 0.00255 cm2/h of the second load).  相似文献   
36.
Theoretical Foundations of Chemical Engineering - In this study, the simulations for first-order chemical reactions (constructive and destructive) in the flow of the Casson fluid with...  相似文献   
37.
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30–140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.  相似文献   
38.
39.
An optimum nanostructure and pore size of catalyst supports is very important in achieving high catalytic performances. In this instance, we evaluated the effects of various carbon nanostructures on the catalytic performances of carbon‐supported platinum (Pt/C) electrocatalysts experimentally and numerically. The Pt/C catalysts were prepared using a hybrid method involving the preparation of dense, hollow, and porous nanostructured carbon particle via aerosol spray pyrolysis followed by microwave‐assisted Pt deposition. Electrochemical characterization of the catalysts showed that the porous Pt/C catalyst gave the best performance; its electrochemical surface area was much higher, more than twice than those of hollow or dense Pt/C. The effects of pore size on electrocatalysis were also studied. The results showed the importance of a balance between mesopores and macropores for effective catalysis with a high charge transfer rate. A fluid flow model showed that good oxygen transport contributed to the catalytic activity. © 2015 American Institute of Chemical Engineers AIChE J, 62: 440–450, 2016  相似文献   
40.
Frying is a common and popular cooking method, which has been widely used in food manufacturing, though it is a very energy-intensive process. Energy analysis has been commonly used to assess the performance of fryers. In this study, we attempted to exergetically assess the performance of a potato crisp frying system, which consists of three main components, a combustor, a heat exchanger, and a fryer. In the analysis, we utilized the actual operational data obtained from the literature. We determined exergy destruction in each system component and the whole system. We calculated universal and functional exergy efficiency values for the system components and compared them with each other. We also undertook a parametric study to investigate how the overall cycle performance was affected by changing the reference environment temperature and some operating conditions. We illustrated the exergy results through the Grassmann (exergy loss and flow) diagram. We calculated the universal exergetic efficiency values of 58, 82, and 77% for the combustor, heat exchanger, and fryer, respectively, with a universal exergetic efficiency value of 4% for the whole frying system. We found that the fryer had the highest functional exergetic efficiency value of 74%, followed by the heat exchanger with 47% and the combustor with 0.08%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号