全文获取类型
收费全文 | 41621篇 |
免费 | 1121篇 |
国内免费 | 122篇 |
专业分类
电工技术 | 599篇 |
综合类 | 57篇 |
化学工业 | 8565篇 |
金属工艺 | 1677篇 |
机械仪表 | 2597篇 |
建筑科学 | 880篇 |
矿业工程 | 21篇 |
能源动力 | 1753篇 |
轻工业 | 3177篇 |
水利工程 | 229篇 |
石油天然气 | 65篇 |
武器工业 | 2篇 |
无线电 | 6594篇 |
一般工业技术 | 8956篇 |
冶金工业 | 3118篇 |
原子能技术 | 543篇 |
自动化技术 | 4031篇 |
出版年
2024年 | 432篇 |
2023年 | 521篇 |
2022年 | 696篇 |
2021年 | 1280篇 |
2020年 | 1039篇 |
2019年 | 1080篇 |
2018年 | 1121篇 |
2017年 | 1124篇 |
2016年 | 1468篇 |
2015年 | 1054篇 |
2014年 | 1678篇 |
2013年 | 2429篇 |
2012年 | 2668篇 |
2011年 | 3091篇 |
2010年 | 2271篇 |
2009年 | 2335篇 |
2008年 | 2283篇 |
2007年 | 1750篇 |
2006年 | 1651篇 |
2005年 | 1357篇 |
2004年 | 1239篇 |
2003年 | 1192篇 |
2002年 | 1079篇 |
2001年 | 882篇 |
2000年 | 792篇 |
1999年 | 747篇 |
1998年 | 1267篇 |
1997年 | 808篇 |
1996年 | 629篇 |
1995年 | 452篇 |
1994年 | 377篇 |
1993年 | 324篇 |
1992年 | 225篇 |
1991年 | 227篇 |
1990年 | 207篇 |
1989年 | 186篇 |
1988年 | 169篇 |
1987年 | 132篇 |
1986年 | 94篇 |
1985年 | 84篇 |
1984年 | 76篇 |
1983年 | 51篇 |
1982年 | 28篇 |
1981年 | 28篇 |
1980年 | 24篇 |
1979年 | 25篇 |
1978年 | 17篇 |
1977年 | 34篇 |
1976年 | 48篇 |
1973年 | 16篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
This paper presents design and simulation of a switchable radiative cooler that exploits phase transition in vanadium di-oxide to turn on and off in response to... 相似文献
52.
Kim Min-Su Park Min-Seok Kang Youn-Bae 《Metallurgical and Materials Transactions B》2019,50(5):2077-2082
Metallurgical and Materials Transactions B - The interfacial reaction between high-Mn–high-Al steel and CaO-SiO2-type mold flux was investigated, with particular emphasis on the reduction of... 相似文献
53.
Insun Song Jongseop Rim Jaemin Lee Inseok Jang Bosung Jung Kisoo Kim Soonchul Lee 《International journal of molecular sciences》2022,23(3)
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs) have recently been reported. In terms of promising therapeutic approaches for diverse diseases and injuries, hfMSCs have gained prominence as healing tools for clinical therapies. Therefore, this review assesses not the only biological advantages of hfMSCs for healing human diseases and regeneration, but also the research evidence for the engraftment and immunomodulation of hfMSCs based on their sources and biological components. Of particular clinical relevance, the present review also suggests the potential therapeutic feasibilities of hfMSCs for musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogenesis imperfecta. 相似文献
54.
Gae-Baik Kim Jeong Min Lee Duc Long Nguyen Joonseok Lee Young-Pil Kim 《International journal of molecular sciences》2022,23(3)
Activity-based monitoring of cell-secreted proteases has gained significant interest due to the implication of these substances in diverse cellular functions. Here, we demonstrated a cell-based method of monitoring protease activity using fluorescent cell-permeable peptides. The activatable peptide consists of anionic (EEEE), cleavable, and cationic sequences (RRRR) that enable intracellular delivery by matrix metalloproteinase-2 (MMP2), which is secreted by living cancer cells. Compared to HT-29 cells (MMP2-negative), HT-1080 cells (MMP2-positive) showed a strong fluorescence response to the short fluorescent peptide via cell-secreted protease activation. Our approach is expected to find applications for the rapid visualization of protease activity in living cells. 相似文献
55.
Dae Gyu Kwon Myung Ku Kim Yoon Sang Jeon Yoon Cheol Nam Jin Seong Park Dong Jin Ryu 《International journal of molecular sciences》2022,23(3)
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton’s jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA. 相似文献
56.
Hyunsu Choi Seung-Shin Yu Jiwon Choi Choung-Soo Kim 《International journal of molecular sciences》2022,23(14)
Background: Atrophy of the vocal folds and the accompanying glottic insufficiency affect the quality of life. Although growth factors have been used to treat muscle atrophy, their effectiveness is limited by their short half-life. Methods: In total, 15 rabbits and 24 rats were used for the study. The right recurrent laryngeal nerves of all animals were transected. One month following nerve transection, PBS (PBS group), rHGF (HGF group), or a c-Met agonistic antibody (c-Met group) was injected into the paralyzed vocal folds. The larynges of the rabbits were harvested from each group for histologic examination and subjected to PCR analysis. Results: Cross-sectional areas (CSAs) of thyroarytenoid muscles were evaluated. The c-Met group had increased CSAs compared to the PBS and HGF groups, but there were no significant differences compared to normal controls. The expression levels of myogenesis-related genes were evaluated three weeks after the injection. The expression levels of myosin heavy chain IIa were significantly increased in the PBS group, while the expression levels of MyoD were increased in the c-Met group. Conclusions: The c-Met agonistic antibody showed promise for promoting muscle regeneration in a vocal fold palsy model. 相似文献
57.
Kim Ghilarducci Valrie C. Cabana Ali Harake Laurent Cappadocia Marc P. Lussier 《International journal of molecular sciences》2022,23(14)
Rab7 is a GTPase that controls late endosome and lysosome trafficking. Recent studies have demonstrated that Rab7 is ubiquitinated, a post-translational modification mediated by an enzymatic cascade. To date, only one ubiquitin E3 ligase and one deubiquitinase have been identified in regulating Rab7 ubiquitination. Here, we report that RNF167, a transmembrane endolysosomal ubiquitin ligase, can ubiquitinate Rab7. Using immunoprecipitation and in vitro ubiquitination assays, we demonstrate that Rab7 is a direct substrate of RNF167. Subcellular fractionation indicates that RNF167 activity maintains Rab7′s membrane localization. Epifluorescence microscopy in HeLa cells shows that Rab7-positive vesicles are larger under conditions enabling Rab7 ubiquitination by RNF167. Characterization of its ubiquitination reveals that Rab7 must be in its GTP-bound active form for membrane anchoring and, thus, accessible for RNF167-mediated ubiquitin attachment. Cellular distribution analyses of lysosome marker Lamp1 show that vesicle positioning is independent of Rab7 and RNF167 expression and that Rab7 endosomal localization is not affected by RNF167 knockdown. However, both Rab7 and RNF167 depletion affect each other’s lysosomal localization. Finally, this study demonstrates that the RNF167-mediated ubiquitination of Rab7 GTPase is impaired by variants of Charcot–Marie–Tooth Type 2B disease. This study identified RNF167 as a new ubiquitin ligase for Rab7 while expanding our knowledge of the mechanisms underlying the ubiquitination of Rab7. 相似文献
58.
Nan-Sun Kim Jihyeon Yu Sangsu Bae Hyang Suk Kim Soyoung Park Kijong Lee Soo In Lee Jin A. Kim 《International journal of molecular sciences》2022,23(13)
The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement. 相似文献
59.
The abuse or misuse of antibiotics has caused the emergence of extensively drug-resistant (XDR) bacteria, rendering most antibiotics ineffective and increasing the mortality rate of patients with bacteremia or sepsis. Antimicrobial peptides (AMPs) are proposed to overcome this problem; however, many AMPs have attenuated antimicrobial activities with hemolytic toxicity in blood. Recently, AMPR-11 and its optimized derivative, AMPR-22, were reported to be potential candidates for the treatment of sepsis with a broad spectrum of antimicrobial activity and low hemolytic toxicity. Here, we performed molecular dynamics (MD) simulations to clarify the mechanism of lower hemolytic toxicity and higher efficacy of AMPR-22 at an atomic level. We found four polar residues in AMPR-11 bound to a model mimicking the bacterial inner/outer membranes preferentially over eukaryotic plasma membrane. AMPR-22 whose polar residues were replaced by lysine showed a 2-fold enhanced binding affinity to the bacterial membrane by interacting with bacterial specific lipids (lipid A or cardiolipin) via hydrogen bonds. The MD simulations were confirmed experimentally in models that partially mimic bacteremia conditions in vitro and ex vivo. The present study demonstrates why AMPR-22 showed low hemolytic toxicity and this approach using an MD simulation would be helpful in the development of AMPs. 相似文献
60.
Ji Hyun Lee Ji Woong Kim Ha Rim Yang Seong-Won Song Song-Jae Lee Yeongha Jeon Anna Ju Narim Lee Min-Gu Kim Minjoo Kim Kyusang Hwang Jin Hwan Yoon Hyunbo Shim Sukmook Lee 《International journal of molecular sciences》2022,23(13)
Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1–4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy. 相似文献