首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   9篇
电工技术   5篇
化学工业   42篇
机械仪表   4篇
建筑科学   16篇
矿业工程   9篇
能源动力   10篇
轻工业   22篇
水利工程   4篇
无线电   65篇
一般工业技术   45篇
冶金工业   7篇
自动化技术   141篇
  2023年   3篇
  2022年   15篇
  2021年   6篇
  2020年   7篇
  2019年   5篇
  2018年   15篇
  2017年   10篇
  2016年   14篇
  2015年   9篇
  2014年   12篇
  2013年   31篇
  2012年   19篇
  2011年   32篇
  2010年   21篇
  2009年   27篇
  2008年   26篇
  2007年   19篇
  2006年   14篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   10篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
361.
Graphene materials have entered a phase of maturity in their development that is characterized by their explorative utilization in various types of applications and fields from electronics to biomedicine. Herein, we describe the recent advances made with graphene‐related materials in the biomedical field and the challenges facing these exciting new tools both in terms of biological activity and toxicological profiling in vitro and in vivo. Graphene materials today have mainly been explored as components of biosensors and for construction of matrices in tissue engineering. Their antimicrobial activity and their capacity to act as drug delivery platforms have also been reported, however, not as coherently. This report will attempt to offer some perspective as to which areas of biomedical applications can expect graphene‐related materials to constitute a tool offering improved functionality and previously unavailable options.  相似文献   
362.
Controlling the covalent bonding of antibodies onto functionalized carbon nanotubes is a key step in the design and preparation of nanotube-based conjugates for targeting cancer cells. For this purpose, an anti-MUC1 antibody (Ab) is linked to both multi-walled (MWCNTs) and double-walled carbon nanotubes (DWCNTs) using different synthetic strategies. The presence of the Ab attached to the nanotubes is confirmed by gel electrophoresis and thermogravimetric analysis. Most importantly, molecular recognition of the antigen by surface plasmon resonance is able to determine similar Ab binding capacities for both Ab-DWCNTs and Ab-MWCNTs. These results are very relevant for the design of future receptor-targeting strategies using chemically functionalized carbon nanotubes.  相似文献   
363.
Functionalized carbon nanotubes in drug design and discovery   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) have been proposed and actively explored as multipurpose innovative carriers for drug delivery and diagnostic applications. Their versatile physicochemical features enable the covalent and noncovalent introduction of several pharmaceutically relevant entities and allow for rational design of novel candidate nanoscale constructs for drug development. CNTs can be functionalized with different functional groups to carry simultaneously several moieties for targeting, imaging, and therapy. Among the most interesting examples of such multimodal CNT constructs described in this Account is one carrying a fluorescein probe together with the antifungal drug amphotericin B or fluorescein and the antitumor agent methotrexate. The biological action of the drug in these cases is retained or, as in the case of amphotericin B constructs, enhanced, while CNTs are able to reduce the unwanted toxicity of the drug administered alone. Ammonium-functionalized CNTs can also be considered very promising vectors for gene-encoding nucleic acids. Indeed, we have formed stable complexes between cationic CNTs and plasmid DNA and demonstrated the enhancement of the gene therapeutic capacity in comparison to DNA alone. On the other hand, CNTs conjugated with antigenic peptides can be developed as a new and effective system for synthetic vaccine applications. What makes CNTs quite unique is their ability, first shown by our groups in 2004, to passively cross membranes of many different types of cells following a translocation mechanism that has been termed the nanoneedle mechanism. In that way, CNTs open innumerable possibilities for future drug discovery based on intracellular targets that have been hard to reach until today. Moreover, adequately functionalized CNTs as those shown in this Account can be rapidly eliminated from the body following systemic administration offering further encouragment for their development. CNT excretion rates and accumulation in organs and any reactivity with the immune system will determine the CNT safety profile and, consequently, any further pharmaceutical development. Caution is advised about the need for systematic data on the long-term fate of these very interesting and versatile nano-objects in correlation with the type of CNT material used. CNTs are gradually plyaing a bigger and more important role in the emerging field of nanomedicine; however, we need to guarantee that the great opportunities they offer will be translated into feasible and safe constructs to be included in drug discovery and development pipelines.  相似文献   
364.
In breast cancer, expression of Cluster of Differentiation 24 (CD24), a small GPI-anchored glycoprotein at the cell periphery, is associated with metastasis and immune escape, while its absence is associated with tumor-initiating capacity. Since the mechanism of CD24 sorting is unknown, we investigated the role of glycosylation in the subcellular localization of CD24. Expression and localization of wild type N36- and/or N52-mutated CD24 were analyzed using immunofluorescence in luminal (MCF-7) and basal B (MDA-MB-231 and Hs578T) breast cancer cells lines, as well as HEK293T cells. Endogenous and exogenously expressed wild type and mutated CD24 were found localized at the plasma membrane and the cytoplasm, but not the nucleoplasm. The cell lines showed different kinetics for the sorting of CD24 through the secretory/endocytic pathway. N-glycosylation, especially at N52, and its processing in the Golgi were critical for the sorting and expression of CD24 at the plasma membrane of HEK293T and basal B type cells, but not of MCF-7 cells. In conclusion, our study highlights the contribution of N-glycosylation for the subcellular localization of CD24. Aberrant N-glycosylation at N52 of CD24 could account for the lack of CD24 expression at the cell surface of basal B breast cancer cells.  相似文献   
365.
We report a new and simple way that can reveal the presence of vascular access recirculation (VAR) in patients undergoing hemodialysis (HD). Acid-base and blood gas parameters (pH, pO(2), pCO(2), and HCO(3)) were measured in blood samples drawn from an arterial fistula needle before the initiation of HD and from arterial and venous lines simultaneously 5 min later, in 31 patients (group A). Vascular access recirculation was measured using the glucose infusion test (GIT) immediately after the withdrawal of the 5-min samples. The same study was repeated in 30 patients in whom HD lines were reversed (group B). A comparison with baseline (predialysis) values of an analysis of the arterial line in group A at 5 min revealed that pCO(2) increased by 1.14+/-2.5 mmHg and HCO(3) by 0.6+/-0.6 mM/L (p<0.02 and p<0.00001, respectively). The corresponding pO(2) and pH values did not show significant differences. Glucose infusion test at 5 min (GITa) was -0.058+/-0.03%. A comparison with baseline (predialysis) values of an analysis of the arterial line in group B at 5 min revealed that pCO(2) increased by 7.7+/-3.5 mmHg and HCO(3) by 2.9+/-1.0 mM/L (p<0.000001 in each case). The pH level was significantly lower in comparison with baseline values (p<0.00001), while pO(2) did not show a significant difference. Glucose infusion test at 5 min (GITb) was 12.0+/-6.1% (p<0.000001 in comparison with GITa values). Clinically significant VAR was defined as HCO(3) increment >1.8 mM/L, based on the receiver-operating characteristics curve, which showed a threshold value of HCO(3) increment >1.8 mmol/L as a predictor of GIT recirculation. Five minutes after the initiation of high-flux HD with a 0 ultrafiltration rate, there is a small increment in arterial HCO(3) values relative to predialysis values. Clinically significant VAR is present when this increment is higher than 1.8 mM/L.  相似文献   
366.
Renal hypomagnesemia syndromes involving CNNM2 protein pathogenic variants are associated with variable degrees of neurocognitive dysfunction and hypomagnesemia. Here, we report a family with a novel CNNM2 p.Pro482Ala variant, presenting with overt hypomagnesemia and mild neurological involvement (autosomal dominant renal hypomagnesemia 6, HOMG6, MIM# 613882). Using a bioinformatics approach, we showed that the p.Pro482Ala amino acid substitution causes a 3D conformational change in CNNM2 structure in the cystathionin beta synthase (CBS) domain and the carboxy-terminal protein segment. A novel finding was that aldosterone inhibition with spironolactone helped to alleviate hypomagnesemia and symptoms in the proband.  相似文献   
367.
We have shown previously that it is possible to accurately reconstruct periodic motions in 3D from a single camera view, using periodicity as a physical constraint from which to perform geometric inference. In this paper we explore the suitability of the reconstruction techniques for real human motion. We examine the degree of periodicity of human gait empirically, and develop algorithmic tools to address some of the challenges arising from this type of motion, including reconstructing motions that deviate from pure periodicity, properly handling the trajectories of multiple points on an articulated body, and proposing a distance function for measuring the difference between two reconstructions. Importantly, we illustrate the usefulness of these techniques by applying them to the tasks of view-invariant activity classification, clinical gait analysis and person identification.  相似文献   
368.
Scabies and hair lice are parasitic diseases that affect human skin and hair, respectively. The incidence and resistances of these infections are increasing. Tenutex® (disulfiram and benzyl benzoate emulsion) is an alternative to standard insecticides to avoid resistances. The aim of the work is to evaluate the transdermal absorption and the in vitro efficacy against scabies and hair lice after different exposition times. Dermatomed human skin was used to assess the dermal absorption using a validated High Performance Liquid Chromatography (HPLC) method. HEK001 keratinocytes were used to evaluate the cytotoxicity of benzyl benzoate. Only benzyl benzoate was able to cross the skin, but it did not show cytotoxicity at any of the tested concentrations. The product efficacy was tested on Psoroptes ovis after direct contact and after administration on sheep skin explants at different contact times. Permethrin/malathion-resistant strains of Pediculus humanis capitis adults and eggs were directly exposed to Tenutex, and the vitality and hatchability, respectively, were evaluated. The anti-scabies study demonstrated that exposure for 6 or 24 h completely eradicated the parasite. The pediculicidal activity of Tenutex exhibited superior efficacy than standard treatment on resistant lice. The positive results obtained suggest that Tenutex® is a good treatment option, especially in drug resistance situations.  相似文献   
369.
Time-Sensitive Networks (TSN) aims at providing a solid underpinning for the support of application connectivity demands across a wide spectrum of use cases and operational environments, such as industrial automation and automotive networks. However, handling network updates in TSN entails additional challenges, stemming from the need to perform both flow rerouting and TSN schedule reconfiguration. To address this issue, we propose a software-defined network (SDN)-based approach for low-overhead TSN network updates, exploiting segment routing over IPv6 (SRv6) for path control. To this end, we introduce the concept of TSN subgraphs in order to quickly reschedule the flows traversing the problematic area and propose a TSN-aware routing heuristic to minimize the convergence time. We further describe the control plane implementation and its integration into Mininet, which empowers us to conduct a wide range of performance tests. Our evaluation results indicate that our approach yields faster recovery and reduces significantly the number of required reconfigurations upon failures, at the expense of a small SRv6 encoding/decoding overhead.  相似文献   
370.
Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号