首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
电工技术   3篇
化学工业   1篇
机械仪表   1篇
轻工业   1篇
无线电   14篇
一般工业技术   25篇
冶金工业   10篇
自动化技术   1篇
  2017年   1篇
  2012年   4篇
  2010年   2篇
  2009年   3篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
31.
MRI guided ultrasound surgery requires small surgical equipment volumes to facilitate the treatment of larger patients in the limited space of a conventional MRI magnet. In addition, large focal volumes are required to reduce the treatment time of large tumors. The concentric-ring array is capable of moving the focus in one dimension, and previous studies have shown that a circular array composed of radial sectors is capable of producing enlarged focal volumes. These two array designs may be combined to create an array that is capable of both enlarging the focus and moving the focus along the axis of the array. Simulations were performed to predict the performance and capabilities of various combined array designs by using numerical routines to, calculate the acoustic power field, temperature distribution, and accumulated thermal dose. The results shown predict that the combined array can create necrosed tissue volumes over 30 times larger than the concentric-ring array while maintaining focal range. The simulation results were verified with an experimental array consisting of 13 rings and 4 sectors. In addition, simulations were performed where multiple focal patterns were cycled in the time domain to create an optimized heating pattern characterized by uniform thermal dose over the volume of the lesion. Such heating patterns resulted in a 40°C lower maximum temperature compared to single mode sonications while producing the same necrosed tissue volume, and yielded a rate of necrosis of 26.4 cm3 /h  相似文献   
32.
For evaluating the feasibility of treating prostate cancer, a 64-element linear ultrasound phased array applicator for intracavitary hyperthermia was designed and constructed. A 64-channel ultrasound driving system including amplifiers, phase shifters, and RF power meters was also developed to drive the array. The design of the array and driving equipment are presented, as are the results of acoustical field measurements and in vitro perfused phantom studies performed with the array. Several techniques for heating realistically sized tumor volumes were also investigated, including single focus scanning and two techniques for producing multiple stationary foci. The results show that the operation of the array correlated closely with the theoretical model. When producing a single stationary focus, the array was able to increase tissue temperature by 12°C in vitro in perfused phantom. With some minor improvements in array design, intracavitary phased arrays could be evaluated in a clinical environment  相似文献   
33.
Modelling of airborne dust emissions in CNC MDF milling   总被引:1,自引:0,他引:1  
All dust control measures are necessary to reduce dust exposure in MDF (Medium Density Fibreboard)-milling, because of the high amount and fineness of the dust produced and a potential risk of exposure to formaldehyde or other glue chemicals during the machining of MDF. The most effective way of reducing dust exposure is to reduce the emission of dust at the source. Airborne dust emission was studied and modelled in the milling. In the milling of MDF, airborne dust emission was much higher than in the milling of solid materials. Milling of MDF produced airborne particles with a mass median diameter of 6–7 µm. The most significant factor affecting the amount of dust created from milling was average chip thickness. In order to reduce the amount of dust, milling parameters should be chosen so that the average chip thickness is greater than 0.05 mm. The average chip thickness could be obtained with different milling parameters, for example with different combinations of feed and traverse rates. The same chip thicknesses resulted in around the same percentage fraction of fine dust mass regardless of how the average chip thickness was obtained. The relationship between the percentage fraction of fine dust mass from the removed mass (c%) and the chip thickness (hm) was modelled and presented in the form of c% = 0.194 h m -1. The model developed can be used to estimate the percentage fraction of fine dust mass as a function of chip thickness. The model can be used in optimisation programs for CNC milling machines to minimize the airborne dust generated and to reduce dust exposure.  相似文献   
34.
The feasibility of using intracavitary ultrasound phased arrays for thermal surgery of the prostate was investigated. A simulation study was performed which demonstrated the ability of phased arrays to generate necrosed tissue volumes over anatomically appropriate ranges (2-6 cm deep and >6 cm axially) and investigated the effects of varying frequency, sonication time, maximum temperature, and blood perfusion on the necrosed tissue volume. An advantage that phased arrays have over geometrically focused transducers is that they are able to electronically scan a single focus over a specified range very quickly. This study demonstrated that the necrosed tissue volume may be increased by more than a factor of 100 by using electronic scanning. Scan parameters that were investigated included foci spacing, scan width, perfusion, maximum temperature, and unequal weighting of the foci. An optimization was performed to select the foci weighting parameters such that a uniform thermal dose was achieved at the focal depth, providing a more uniformly heated target volume. Finally, the ability of linear ultrasound phased arrays to create necrosed tissue lesions was demonstrated experimentally in fresh beef liver using a single stationary focus and single focus scans generated by an aperiodic 0.83-MHz 57-element linear ultrasound phased array  相似文献   
35.
Needle and spot-poled membrane hydrophones using polyvinylidene fluoride (PVDF) sensors are widely used for characterization of biomedical ultrasound fields. It is known that, in measurements of continuous-wave (CW) fields, standing waves may be generated between the transducer and the hydrophone, distorting the field and possibly alternating the signal of the hydrophone. This study uses a three-dimensional, full-wave method to computationally simulate the distortion in the CW field caused by needle and membrane hydrophones. The physical model used in simulations is based on the linear time-harmonic wave equation, which therefore neglects the effects of nonlinear wave propagation. The significance of the distortion is examined by comparing fields emitted by 0.5-5.0 MHz planar circular transducers in the absence and presence of the hydrophones. In addition, the effect of the field distortions on the signal of the hydrophones is studied with simulated measurements. The simulations showed an observable standing wave pattern between the source and the needle hydrophone if the diameter of the needle was larger than a half of the wavelength. However, the standing waves had no clear effect on the signal of the hydrophone. The presence of membrane hydrophone in the CW field generated notable standing waves. Furthermore, the standing waves caused a periodic distortion to the signal of the membrane hydrophone.  相似文献   
36.
Pre- and postdesiccation sound speeds through ex vivo porcine skull specimens were determined by time-of-flight measurements with propagated broadband pulses centered at 0.97 MHz (Os 12.7 mm, -6-dB band-width = 58%). The measured longitudinal sound speed in the 13 porcine samples (predesiccation average sound speed = 1727 +/- 57 ms(-1)) changed by a statistically significant +2.3% after deionized water reconstitution (paired t-test, alpha = 0.05, p = 0.0332).  相似文献   
37.
Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.  相似文献   
38.
The inherent sensitivity of multiple gradient-echo sequences to the chemical shift is exploited to rapidly map muscle water frequency shifts caused by ultrasonic heating. The use of multiple echoes is shown to offer several advantages over single gradient-echo approaches previously proposed for temperature measurement. An increase in the effective bandwidth significantly reduces aliasing problems observed with single gradient-echo methods in high temperature applications. Of greater significance is the improved immunity to intrascan motion found for multi-echo versus single echo gradient methods, making the former more attractive for clinical applications. Finally, a sensitivity to the presence of multiple spectral components unavailable with single gradient-echo methods is obtained.  相似文献   
39.
Transcranial ultrasound imaging is limited by poor acoustic windows and skull induced distortions to the beam. Shear waves in the skull have a better impedance match with longitudinal waves in water and thereby produce a more coherent focus inside the skull. This study presents work on an imaging technique that utilizes shear-wave propagation through the skull. The pulse-echo lateral distortion introduced by the skull was analyzed by imaging a point scatterer behind ex vivo human craniums at 1 MHz. Brightness images of the target obtained with either shear-mode or conventional longitudinal-mode transmission in the bone were assessed to quantify lateral resolution. As compared to longitudinal-mode transmission, it was found that the use of shear-mode resulted in improved localization along the propagation (depth) axis at the expense of degraded lateral resolution. The signal-to-noise ratio (SNR) limitations introduced by severe attenuation of shear-waves in the skull were overcome with frequency modulated (FM) coded excitations. This gain in SNR was exchanged with resolution and used for compensation of frequency-dependent attenuation in the skull, resulting in a greater than 20% improvement in lateral resolution for both modes of transcranial transmission. The results are an important step towards enhancing the quality of transcranial sonography.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号