首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2612篇
  免费   173篇
  国内免费   24篇
电工技术   43篇
综合类   7篇
化学工业   760篇
金属工艺   80篇
机械仪表   109篇
建筑科学   115篇
矿业工程   10篇
能源动力   170篇
轻工业   172篇
水利工程   48篇
石油天然气   26篇
无线电   250篇
一般工业技术   416篇
冶金工业   79篇
原子能技术   17篇
自动化技术   507篇
  2024年   4篇
  2023年   49篇
  2022年   75篇
  2021年   180篇
  2020年   132篇
  2019年   185篇
  2018年   218篇
  2017年   193篇
  2016年   179篇
  2015年   119篇
  2014年   209篇
  2013年   279篇
  2012年   179篇
  2011年   207篇
  2010年   154篇
  2009年   111篇
  2008年   68篇
  2007年   40篇
  2006年   41篇
  2005年   28篇
  2004年   20篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   12篇
  1999年   4篇
  1998年   12篇
  1997年   3篇
  1996年   7篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1967年   1篇
排序方式: 共有2809条查询结果,搜索用时 15 毫秒
91.
The aim of this study was to analyse input–output energy and economical assessment of almond production in three age groups of orchards (group I 6–10, group II 11–15 and group III 16–20 years old) in Chahrmahal-Va-Bakhtiari province, Iran. Data for almond production were collected by administering questionnaire in face-to-face interviews from the orchards selected based on random sampling method during a 3-year period. The results showed that 57,027.13, 60,341.14 and 61,640.43 MJ ha?1 energy was consumed by group I, group II and group III, respectively. The most energy input was consumed by electricity, followed by chemical fertilizer. Energy indices were calculated, and the results revealed that energy efficiency was 0.62, 1.12 and 0.81 in the triple groups of orchards, respectively. Economical assessment showed that total production cost of almond in group I, II and III was $4547.54, $5799.26 and $5687.05 ha?1, respectively. In all orchard groups, the shares of variable and fixed production costs found to be same nearly. Net return for almond production was $14,516.22, $30,735.19 and $21,395.57ha?1, respectively. According to the research results, it was concluded that although almond production in the study region was not an efficient process in terms of energy consumption, it was a profitable agricultural operation.  相似文献   
92.
Pure CuO–CeO2 nanocomposites were synthesized by simple thermal decomposition method in presence of various Cu salts as a copper source and fructose as a green capping agent. In this study, the effect of various parameters such as the type of copper sources, temperature and time of reaction on the morphology and the particles size were studied. The products were characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), N2 adsorption (BET), vibrating sample magnetometer (VSM), and infrared spectrum (FT-IR). The optical property of the nanocomposite was examined via UV–vis (DRS) spectroscopy and the band gap was calculated to 3 eV. Also, the hydrogen storage capacity of CuO–CeO2 nanocomposites and CeO2 nanoparticles were investigated via chronopotentiometry method for the first time. The discharge capacity of CeO2 nanoparticles and CuO–CeO2 nanocomposites in 1 mA current and 20 cycles obtained 2150 and 2450 mAh/g, respectively.  相似文献   
93.
Due to the vast production of crude oil and consequent pressure drops through the reservoirs, secondary and tertiary oil recovery processes are highly necessary to recover the trapped oil. Among the different tertiary oil recovery processes, foam injection is one of the most newly proposed methods. In this regard, in the current investigation, foam solution is prepared using formation brine, C19TAB surfactant and air concomitant with nano-silica (SiO2) as foam stabilizer and mobility controller. The measurements revealed that using the surfactant-nano SiO2 foam solution not only leads to formation of stable foam, but also can reduce the interfacial tension mostly considered as an effective parameter for higher oil recovery. Finally, the results demonstrate that there is a good chance of reducing the mobility ratio from 1.12 for formation brine and reservoir oil to 0.845 for foam solution prepared by nanoparticles.  相似文献   
94.
The geometries, interaction energies, and bonding properties of cationic chalcogen bonds are studied in binary complexes XF2Y+?NCZ (X═H, CN, F; Y═S, Se; Z═H, Cl, Br). The nature of these interactions is studied by a vast number of methods, including molecular electrostatic potential (MEP), Noncovalent Interaction Index (NCI), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analyses. The interaction energies of these complexes vary between ?20.94?kcal/mol in HF2S+?NCH and ?33.72?kcal/mol in F3Se+?NCBr. According to the QTAIM analysis, all these cationic chalcogen bonds are classified as a closed-shell interaction with a partial covalent character. Moreover, cooperative effects between cationic chalcogen bond and hydrogen or halogen bond interactions are studied in ternary XF2Y+?NCZ?NH3 complexes. These cooperative effects are analyzed in terms of the parameters derived from the QTAIM and NBO analyses, and electron density difference plots.  相似文献   
95.
96.
In the present work, rarefied gas flow between two parallel moving plates maintained at the same uniform temperature is simulated using the direct simulation Monte Carlo (DSMC) method. Heat transfer and shear stress behavior in the micro/nano-Couette flow is studied and the effects of the important molecular structural parameters such as molecular diameter, mass, degrees of freedom and viscosity–temperature index on the macroscopic behavior of gases are investigated. Velocity, temperature, heat flux and shear stress in the domain are studied in details. Finally, a discussion on the role of the molecular structural parameters in the decrease or increase of amounts of hydrodynamics and thermal properties of the gas is presented.  相似文献   
97.
Superconducting devices are known to produce nonlinear effects. In planar structures, these nonlinearities depend on the current distribution on the strip, which definitely depends on the structure of device. This paper used a numerical method based on 3D-FEM to obtain the current distribution in the open-ends and gaps in the superconducting microstrip structures. This is used to present the nonlinear distributed circuit modeling of these discontinuities and its impact on the nonlinear phenomenon. This nonlinear circuit model is used in the Harmonic Balance (HB) method to analyze nonlinearity in the superconducting microwave devices. Therefore, this simple accurate enough nonlinear circuit model is warmly welcomed to retire the seemingly inevitable use of time- and memory-consuming numerical techniques for nonlinear analysis of discontinuities in superconducting microwave structures. As an example, we analyze a microstrip superconducting end-coupled band pass filter (BPF). These results are very useful for optimizing the resonators of the superconducting microwave filters in order to minimize its nonlinear distortions.  相似文献   
98.
A parametric analytical study is carried out to scrutinize the mechanism of fluid flow, heat transfer and entropy generation in a low-speed rarefied gaseous flow confined between a shaft and its concentric housing, i.e., the cylindrical Couette flow. In the first law analysis, closed form solutions for the radial temperature profiles are obtained by incorporating the calculated velocity distribution into the energy equation. The derivations for three thermal cases, which are founded on imposing different thermal conditions, namely, the Uniform Heat Flux (UHF) and the Constant Wall Temperature (CWT) boundary conditions, are presented. In the second law analysis, the contributions of thermal diffusion and fluid friction irreversibility to the total entropy generation in the micro domain are illustrated, and the relevant expressions for the Bejan number and the entropy generation number as well as the average entropy generation rate are derived. Finally, the variations of major variables with influential parameters such as the Knudsen number, the Brinkman number and rotation mode are investigated to elucidate the associated effects of rarefaction phenomenon, viscous dissipation and geometric condition on the characteristics of the flow.  相似文献   
99.
In this article, an internal-reforming solid oxide fuel cell–gas turbine (IRSOFC–GT) hybrid system is modeled and analyzed from thermal (energy and exergy), economic, and environmental points of view. The model is validated using available data in the literature. Utilizing the genetic algorithm optimization technique, multi-objective optimization of modeled system is carried out and the optimal values of system design parameters are obtained. In the multi-objective optimization procedure, the exergy efficiency and the total cost rate of the system (including the capital and maintenance costs, operational cost (fuel cost), and social cost of air pollution for CO, NOx, and CO2) are considered as objective functions. A sensitivity analysis is also performed in order to study the effect of variations of the fuel unit cost on the Pareto optimal solutions and their corresponding design parameters. The optimization results indicate that the final optimum design chosen from the Pareto front results in exergy efficiency of 65.60% while it leads to total cost of 3.28 million US$ year−1. It is also demonstrated that the payback time of the chosen design is 6.14 years.  相似文献   
100.
In this paper, stress behavior of shallow tunnels under simultaneous non-uniform surface traction and symmetric gravity loading was studied using a direct boundary element method(BEM). The existing fullplane elastostatic fundamental solutions to displacement and stress fields were used and implemented in a developed algorithm. The cross-section of the tunnel was considered in circular, square, and horseshoe shapes and the lateral coefficient of the domain was assumed as unit quantity. Double-node procedure of the BEM was applied at the corners to improve the model including sudden traction changes. The results showed that the method used was a powerful tool for modeling underground openings under various external as well as internal loads. Eccentric loads significantly influenced the stress pattern of the surrounding tunnel. The achievements can be practically used in completing and modifying regulations for stability investigation of shallow tunnels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号