Copper is required for aerobic respiration by Mycobacterium tuberculosis and its human host, but this essential element is toxic in abundance. Copper nutritional immunity refers to host processes that modulate levels of free copper to alternately starve and intoxicate invading microbes. Bacteria engulfed by macrophages are initially contained within copper-limited phagosomes, which fuse with ATP7A vesicles that pump in toxic levels of copper. In this report, we examine how CtpB, a P-type ATPase in M. tuberculosis, aids in response to nutritional immunity. In vitro, the induced expression of ctpB in copper-replete medium inhibited mycobacterial growth, while deletion of the gene impaired growth only in copper-starved medium and within copper-limited host cells, suggesting a role for CtpB in copper acquisition or export to the copper-dependent respiration supercomplex. Unexpectedly, the absence of ctpB resulted in hypervirulence in the DBA/2 mouse infection model. As ctpB null strains exhibit diminished growth only in copper-starved conditions, reduced copper transport may have enabled the mutant to acquire a “Goldilocks” amount of the metal during transit through copper-intoxicating environments within this model system. This work reveals CtpB as a component of the M. tuberculosis toolkit to counter host nutritional immunity and underscores the importance of elucidating copper-uptake mechanisms in pathogenic mycobacteria. 相似文献
The reaction of 5-arylidene-4-arylimino-2-thiazolidinones 4 with GRIGNARD reagents effected 1,4-addition to the exocyclic CC bond with the formation of 5 . Alkylation of the arylidene derivatives 4 with diazomethane or methyl iodide results in the formation of the N-methyl derivatives 6 . Treatment of 6 with phenylmagnesium bromide effects addition of the reagent to the double bond of the lateral chain to yield products, proved to have structure 8 . The 5-arylazo derivatives 9 of 4-arylimino-2-thiazolidinones were obtained by coupling 4 with aromatic diazonium chlorides. Compounds 9 were N-methylated with diazomethane to yield 10 . 相似文献
Spent Ni–Cd batteries are now considered an important source for many valuable metals. The recovery of cadmium, cobalt, and nickel from spent Ni–Cd Batteries has been performed in this study. The optimum leaching process was achieved using 20% H2SO4, solid/liquid (S/L) 1/5 at 80 °C for 6 h. The leaching efficiency of Fe, Cd, and Co was nearly 100%, whereas the leaching efficiency of Ni was 95%. The recovery of the concerned elements was attained using successive different separation techniques. Cd(II) ions were extracted by a solvent, namely, Adogen® 464, and precipitated as CdS with 0.5% Na2S solution at pH of 1.25 and room temperature. The extraction process corresponded to pseudo-2nd-order. The prepared PTU-MS silica was applied for adsorption of Co(II) ions from aqueous solution, while the desorption process was performed using 0.3 M H2SO4. Cobalt was precipitated at pH 9.0 as Co(OH)2 using NH4OH. The kinetic and thermodynamic parameters were also investigated. Nickel was directly precipitated at pH 8.25 using a 10% NaOH solution at ambient temperature. FTIR, SEM, and EDX confirm the structure of the products. 相似文献
Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds. 相似文献
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH. 相似文献
Although light-emitting diode (LED) technology has extended the research on targeted photomorphogenic, physiological, and biochemical responses in plants, there is not enough direct information about how light affects polyamine metabolism. In this study, the effect of three spectral compositions (referred to by their most typical characteristic: blue, red, and the combination of blue and red [pink] lights) on polyamine metabolism was compared to those obtained under white light conditions at the same light intensity. Although light quality induced pronounced differences in plant morphology, pigment contents, and the expression of polyamine metabolism-related genes, endogenous polyamine levels did not differ substantially. When exogenous polyamines were applied, their roborative effect were detected under all light conditions, but these beneficial changes were correlated with an increase in polyamine content and polyamine metabolism-related gene expression only under blue light. The effect of the polyamines on leaf gene expression under red light was the opposite, with a decreasing tendency. Results suggest that light quality may optimize plant growth through the adjustment of polyamine metabolism at the gene expression level. Polyamine treatments induced different strategies in fine-tuning of polyamine metabolism, which were induced for optimal plant growth and development under different spectral compositions. 相似文献
The aim of the paper is to automatically select the optimal EEG rhythm/channel combinations capable of classifying human alertness states. Four alertness states were considered, namely ‘engaged’, ‘calm’, ‘drowsy’ and ‘asleep’. The features used in the automatic selection are the energies associated with the conventional rhythms, \(\delta , \theta , \alpha , \beta\) and \(\gamma\), extracted from overlapping windows of the different EEG channels. The selection process consists of two stages. In the first stage, the optimal brain regions, represented by sets of EEG channels, are selected using a simple search technique based on support vector machine (SVM), extreme learning machine (ELM) and LDA classifiers. In the second stage, a fuzzy rule-based alertness classification system (FRBACS) is used to identify, from the previously selected EEG channels, the optimal features and their supports. The IF–THEN rules used in FRBACS are constructed using a novel differential evolution-based search algorithm particularly designed for this task. Each alertness state is represented by a set of IF–THEN rules whose antecedent parts contain EEG rhythm/channel combination. The selected spatio-frequency features were found to be good indicators of the different alertness states, as judged by the classification performance of the FRBACS that was found to be comparable to those of the SVM, ELM and LDA classifiers. Moreover, the proposed classification system has the advantage of revealing simple and easy to interpret decision rules associated with each of the alertness states.
In this paper we propose an automatic methodology to verify the soundness of model checking reduction techniques. The idea is to use the consistency of the specifications to verify if the reduced model is faithful to the original one. The user provides the reduction technique, the specification and the system under verification. Then, using Higher Order Logic he verifies automatically if the reduction technique is soundly applied. The method is completely defined in an MDG–HOL special integration platform that combines an automatic high level model checking tool Multiway Decision Graphs (MDGs) within the HOL theorem prover. We provide two case studies, the first one is the reduction using SAT–MDG of an Island Tunnel Controller and the second one is the MDG–HOL assume-guarantee reduction of the Look-Aside Interface. The obtained results of our approach offer a considerable gain in terms of the correctness of heuristics and reduction techniques as applied to commercial model checking, however a small penalty is paid in terms of CPU time and memory usage. 相似文献
Local heat-transfer coefficients along a flat plate in natural convection in air were measured using Boelter-Schmidt type heat flux meters. Experiments were carried out for different temperature differences in heating and cooling, and with inclinations varying from the horizontal “facing upwards” position, through the vertical position, to the horizontal “facing downwards” position.
The results are presented in terms of local Nusselt number as a function of the local Grashof number “tangential component”. All runs were in the range accepted as that of laminar boundary layer flow. However, under certain conditions when the normal velocity component of the air is directed away from the surface, separated flow is indicated along the trailing part of the surface, well before turbulence sets in in the boundary layer. Separation starts at a certain point along the surface. This point is nearer to the leading edge the higher the temperature difference, and the larger the inclination of the surface to the vertical.
In a separation region, the flux density is uniform. In all other regions the results agreed closely with established theories of laminar boundary layer flow.
A leading adiabatic section, used in some of the experiments, did not affect the results. An appendix gives relations recommended for engineering calculations. 相似文献