首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17051篇
  免费   1015篇
  国内免费   132篇
电工技术   262篇
综合类   75篇
化学工业   4504篇
金属工艺   415篇
机械仪表   609篇
建筑科学   629篇
矿业工程   27篇
能源动力   1209篇
轻工业   1666篇
水利工程   218篇
石油天然气   251篇
武器工业   4篇
无线电   1705篇
一般工业技术   3073篇
冶金工业   624篇
原子能技术   112篇
自动化技术   2815篇
  2024年   82篇
  2023年   342篇
  2022年   750篇
  2021年   1103篇
  2020年   909篇
  2019年   971篇
  2018年   1119篇
  2017年   1012篇
  2016年   1002篇
  2015年   602篇
  2014年   933篇
  2013年   1712篇
  2012年   1164篇
  2011年   1210篇
  2010年   831篇
  2009年   744篇
  2008年   523篇
  2007年   436篇
  2006年   354篇
  2005年   236篇
  2004年   211篇
  2003年   189篇
  2002年   152篇
  2001年   129篇
  2000年   118篇
  1999年   103篇
  1998年   170篇
  1997年   138篇
  1996年   123篇
  1995年   95篇
  1994年   77篇
  1993年   67篇
  1992年   56篇
  1991年   44篇
  1990年   53篇
  1989年   37篇
  1988年   30篇
  1987年   26篇
  1986年   39篇
  1985年   38篇
  1984年   35篇
  1983年   34篇
  1982年   26篇
  1981年   20篇
  1980年   20篇
  1979年   16篇
  1978年   22篇
  1977年   22篇
  1976年   28篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
911.
The trivalent rare-earth (RE3+) doped phosphors show tremendous achievement in narrow band multicolor line emission for various applications. However, the 4f–4f absorption transition of these ions is forbidden in UV and blue light excitation. Usually, a sensitizer having spin allowed transition was used as a co-dopant to excite these ions via the energy transfer phenomenon. Another approach promisingly using to excite these ions by efficient energy transfer from the intrinsic emission of the Ca2LuTaO6 double perovskite phosphors host lattice. Phosphors of Ca2LuTaO6 with double perovskite structure were synthesized by using a high-temperature solid-state reaction method. The produced Ca2LuTaO6 double perovskite phosphors show an intrinsic broad band emission centered at 424 nm under the excitation of 313 nm UV light. The origin of this broad band blue emission was deeply investigated by using computation and experimental approaches. The trivalent activator Dy3+ and Eu3+ were doped is a single and co-dopant in the produced Ca2LuTaO6 phosphors to check their excitation in UV and near-UV spectral region. X-ray diffraction and scanning electron microscopy were used to investigate the structure and phase analysis. Various characterizations such as photoluminescence excitation, emission, and CIE chromaticity coordinates were measured which illustrate the potential of Dy3+ and Eu3+ activated Ca2LuTaO6 double perovskite phosphors for narrow band multicolor line emission for various applications.  相似文献   
912.
Electron emission characteristic, electrical conductivity of polycrystalline mayenite (12CaO·7Al2O3) electride, formation of [Ca24Al28O64]4+(e)4 framework as a function of phase content, and microstructure have been investigated. The mayenite microstructure was investigated using high-resolution transmission microscopy which revealed the type cage structure of 12CaO·7Al2O3 partially filled by extra-framework oxygen ions. Incorporation of electrons by means of carbon ion template 12CaO·7Al2O3 produces complex structure, and an incomplete ion template 12CaO·7Al2O3 structure consisting of mixture of a [Ca24Al28O64]4+(e)4 and [Ca24Al28O64]4+(O2−)2 framework had a direct effect on the electron emission. Surface chemistry and stability of the 12CaO·7Al2O3 electride have been studied using x-ray photoelectron spectroscopy. The work function of phase pure 12CaO·7Al2O3 electride was determined from direct thermionic emission data and compared to the measurement from ultraviolet photoelectron spectroscopy (UPS). Depending on the extent of ion template of 12CaO·7Al2O3 structure, a work function of 0.9–1.2 eV and 2.1–2.4 eV has been measured and thermionic emission initiating at 600°C.  相似文献   
913.
The effects of natural disasters, pandemic-induced lockdowns, and other disruptions often cascade across networks. In this work, we use minimum cost of resilience (MCOR) and operation-based resilience metrics to quantify network performance against single-connectivity failures and identify critical connections in interconnected networks. MCOR corresponds to the minimum additional infrastructure investment that is required to achieve a certain level of resilience. To guarantee MCOR, we incorporate the metrics in a multi-scenario mixed-integer linear program (MILP) that accounts for resilience in the design phase of interconnected networks. The goal is to obtain optimal generation and transportation capacities with flexible operation under all single-connectivity disruption scenarios. We demonstrate the applicability of our resilience-aware framework on a water-energy nexus (WEN) example focusing on grass-root design and retrofitting. We further apply the framework to analyze a regional WEN and observe that it is possible to achieve “full” resilience in the expense of additional regional investments.  相似文献   
914.
Epoxidized methyl esters (EMO) with their high oxirane ring reactivity, acts as a raw material in the synthesis of various industrial chemicals including polymers, stabilizers, plasticizers, glycols, polyols, carbonyl compounds, biolubricants etc. EMO has been generally quantified by the gas chromatography (GC) and high-performance liquid chromatography (HPLC) techniques. Taking into the account of the limitations of these techniques, two qHNMR-based equations have been proposed for the quantification of EMO in the mixture of EMO and methylesters (MO). The validity of the proposed method was determined using standard mixtures of MO and EMO having different molar concentrations. The developed equations have been applied on the samples of EMO prepared from oleic acid in two-step process viz., esterification followed by epoxidation. The qHNMR-based EMO quantification showed acceptable agreement with the results obtained from HPLC analysis.  相似文献   
915.
Oxidation kinetics of the triacylglycerols (TAGs) and fatty acid methyl esters (FAMEs) of sesame, olive, and canola oils were studied in the presence of the different concentrations of sesamol (0.1%–0.16%) at 60, 80, and 100°C. Sesamol increased the temperature coefficient, TC, and Q10 number of the TAGs more significantly compared to the FAMEs. All the sesamol-added TAG and FAME systems, respectively, of the olive, canola, and sesame oils, respectively, exerted increased values of the Arrhenius (activation energy, Ea, and frequency factor, A) and Eyring (enthalpy, ΔH++, and entropy, ΔS++) equation parameters. Sesamol improved the Gibbs free energy (ΔG++) of the activated complex formation in the canola, sesame, and olive systems, respectively, and the effect was greater in the FAMEs.  相似文献   
916.
Highly porous free-standing co-poly(vinylidene fluoride)/modacrylic/SiO2 nanofibrous membrane was developed using electrically-assisted solution blow spinning method. The performance and the potential of the membrane as a lithium-ion battery separator were investigated. The addition of modacrylic enhanced the solution spinnability that resulted in defect-free membranes. Moreover, the presence of modacrylic enhanced the dimensional and thermal stabilities, while the addition of hydrophilic SiO2 nanoparticle enhanced both mechanical property and ionic conductivity. Combustion test results illustrated that the presence of modacrylic provide flame retarding property over a set of different polymeric-based membranes. Electrochemical performance results showed that the developed membrane can increase the battery capacity compared with the commercial separator.  相似文献   
917.
A waste material called oil fly ash (OFA) was acid-functionalized, yielding f-OFA-COOH, which was then reacted with cerium oxide (CeO2) to make CeO2-functionalized OFA, or f-OFA-CeO2. Pristine OFA and f-OFA-CeO2 were used to make waterborne polyurethane (WBPU) dispersions, referred to as WBPU/OFA and WBPU/f-OFA-CeO2, respectively, with defined OFA and f-OFA-CeO2 content. All the dispersions were applied to mild steel as organic coatings to evaluate their protective properties, such as their hydrophobicity, adhesive strength and UV-shielding resistance. These protective properties varied based on the OFA and f-OFA-CeO2 content. The highest water contact angle, minimum water swelling and maximum adhesive strength were found using WBPU/f-OFA-CeO2-20 coating (using 2.00 wt% f-OFA-CeO2), which also showed the maximum ultraviolet (UV) absorption via UV–vis spectroscopy analysis. This UV shielding result also matched field test results, as that coating was found to exhibit the lowest UV degradation near a marine atmosphere, as shown by X-ray photoelectron spectroscopy (XPS) analysis. The least affected hydrophobicity was also recorded for the sample with the WBPU/f-OFA-CeO2-20 coating.  相似文献   
918.
Shock electrodialysis is a recently developed electrochemical water treatment method that shows promise for water deionization and ionic separations. Although simple models and scaling laws have been proposed, a predictive theory has not yet emerged to fit experimental data and enable system design. Here, we extend and analyze existing “leaky membrane” models for the canonical case of a steady shock in crossflow, as in recent experimental prototypes. Two-dimensional numerical solutions are compared with analytical boundary-layer approximations and experimental data. The boundary-layer theory accurately reproduces the simulation results for desalination, and both models predict the data collapse of the desalination factor with dimensionless current, scaled to the incoming convective flux of cations. The numerical simulation also predicts the water recovery increase with current. Nevertheless, neither approach can quantitatively fit the transition from normal to over-limiting current, which suggests gaps in our understanding of extreme electrokinetic phenomena in porous media.  相似文献   
919.
920.

This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7°C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29°C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号