首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   36篇
  国内免费   6篇
电工技术   11篇
化学工业   170篇
金属工艺   32篇
机械仪表   31篇
建筑科学   3篇
矿业工程   3篇
能源动力   59篇
轻工业   33篇
水利工程   5篇
石油天然气   3篇
无线电   71篇
一般工业技术   159篇
冶金工业   69篇
自动化技术   70篇
  2024年   4篇
  2023年   14篇
  2022年   26篇
  2021年   44篇
  2020年   40篇
  2019年   24篇
  2018年   33篇
  2017年   41篇
  2016年   28篇
  2015年   22篇
  2014年   51篇
  2013年   62篇
  2012年   35篇
  2011年   36篇
  2010年   47篇
  2009年   25篇
  2008年   34篇
  2007年   25篇
  2006年   20篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1983年   1篇
排序方式: 共有719条查询结果,搜索用时 687 毫秒
711.
International Journal of Information Security - Attribute-based encryption (ABE) is widely used for a secure and efficient data sharing. The predetermined access policy of ABE shares the data with...  相似文献   
712.
Additive‐additive interactions between zinc dialkylphosphorodithioates and ashless alkylaminophosphorodithioates have been studied with the object of reducing the zinc level in the lubricant formulations. Various combinations of these components were evaluated for their antiwear and antioxidant properties using four‐ball and differential scanning calorimetry techniques.  相似文献   
713.
Electrokinetics of the solute transport across the porous walls of micro channel is important from its practical application but less explored. Transport of the charged macro-solutes across perm-selective walls in a microchannel is investigated. The extended Nernst–Planck equation describes the charged macro-solutes distribution in the mass transfer boundary layer over the porous wall. The transverse electromigration of the charged macro-solute either augments or suppresses the concentration polarization and the permeation rate depending on the wall and solute surface potential (attractive or repelling). The wall potential is screened due to the electrical double layer interaction of the wall and charged solute. It is observed that the charged solute concentration over the channel wall enhances by two times in case of oppositely charged interactions (unlike solute and channel wall) compared to like charges. The findings of this study can facilitate understanding of electrokinetic based drug delivery and separation systems involving charged solutes.  相似文献   
714.
This study explores a combined electrochemical and spectroscopic approach to investigate the degradation of bilirubin, a molecular marker of jaundice in humans using a biocompatible nanohybrid (citrate-functionalized Mn3O4 nanohybrid; C−Mn3O4 NH). The approach is aimed at the development of a facile theranostic tool for treatment, detection, and prognosis of jaundice. Linear sweep voltammetry (LSV) studies on bilirubin, C−Mn3O4 NH, a model carrier protein, and its complex with bilirubin reveal the efficacy of the nanohybrid for both degradation and detection of bilirubin. Furthermore, spectroscopic studies depict that distal electron transfer to be the probable mechanism behind the observed bilirubin degradation in physiological milieu.  相似文献   
715.
Organelles are the working hubs of the cells. Hence, visualizing these organelles inside the cells is highly important for understanding their roles in pathological states and development of therapeutic strategies. Herein, we report the development of a novel highly substituted oxazoles with modular scaffolds (AIE-ER, AIE-Mito, and AIE-Lyso), which can home into endoplasmic reticulum (ER), mitochondria, and lysosomes inside the cells. These oxazoles showed remarkable aggregation-induced emission (AIE) property in water and in the solid state due to dual intramolecular H-bonding, which was confirmed by pH- and temperature-dependent fluorescence studies followed by molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Confocal laser scanning microscopy studies revealed that AIE-ER, AIE-Mito, and AIE-Lyso efficiently homed into ER, mitochondria and lysosomes, respectively, in the HeLa cervical cancer cells and non-cancerous human retinal pigment epithelial RPE-1 cells within 3 h without showing any toxicity to the cells with high sub-cellular photostability. To the best of our knowledge, this is the first report of highly substituted oxazole-based small molecule AIEgens for organelle imaging. We anticipate these novel AIEgens have promise to image sub-cellular organelles in different diseased states as well as understanding the inter-organelle interactions towards the development of novel therapeutics.  相似文献   
716.
The development of efficient metal-free photocatalysts for the generation of reactive oxygen species (ROS) for sulfur mustard (HD) decontamination can play a vital role against the stockpiling of chemical warfare agents (CWAs). Herein, one novel concept is conceived by smartly choosing a specific ionic monomer and a donor tritopic aldehyde, which can trigger linker-independent regioselective protonation/deprotonation in the polymeric backbone. In this context, the newly developed vinylene-linked ionic polymers (TPA/TPD-Ionic) are further explored for visible-light-assisted detoxification of HD simulants. Time-resolved-photoluminescence (TRPL) study reveals the protonation effect in the polymeric backbone by significantly enhancing the life span of photoexcited electrons. In terms of catalytic performance, TPA-Ionic outperformed TPD-Ionic because of its enhanced excitons formation and charge carrier abilities caused by the donor-acceptor (D-A) backbone and protonation effects. Moreover, the formation of singlet oxygen (1O2) species is confirmed via in-situ Electron Spin Resonance (ESR) spectroscopy and density functional theory (DFT) analysis, which explained the crucial role of solvents in the reaction medium to regulate the (1O2) formation. This study creates a new avenue for developing novel porous photocatalysts and highlights the crucial roles of sacrificial electron donors and solvents in the reaction medium to establish the structure-activity relationship.  相似文献   
717.
Iron-based (pre)catalysts have attracted enormous attention for various electrooxidation reactions due to the low cost, high abundance, and multiple accessible redox states of iron. Herein, a well-defined helical iron borophosphate (LiFeBPO) is developed as an electro(pre)catalyst for the oxygen evolution reaction (OER) and selective alcohol oxidation. When deposited on nickel foam (NF), LiFeBPO exhibits an exceptional OER performance at ambient conditions attaining a current density of 100 mA cm−2 at ≈276 mV overpotential in 1 m KOH. Notably, this anode sustains durable alkaline water electrolysis at 500 mA cm−2 for over 330 h under industrial conditions (6 m KOH and 85 °C). In –situ and ex situ investigations reveal a deep reconstruction of LiFeBPO during OER, which transforms into a 3D open porous skeleton assembled by ultrasmall, low-crystalline α-FeOOH nanoparticles (interfacing with NiOOH of NF). This structure contributes to exposing accessible surface active sites, as well as accelerating mass transport and bubble detachment. Moreover, this electrode also catalyzes the electrooxidation of alcohols (methanol, ethylene glycol, and glycerol) to formic acid (FA) with high selectivity and full conversion. This study provides promising solutions for designing suitable anodes for the simultaneous production of green hydrogen fuel and value–added FA from electrooxidation reactions.  相似文献   
718.
Several applications on fractional order (FO) control have gained considerable significance in the recent years, which led to the evolution of novel tuning strategies of the generalized order FO controllers. Some of the methods in available literatures are based on constrained minimization optimization techniques or analytical method defined only for specific plants. They are valid only for some special model cases. On the contrary, in this technical note, a generalized non-integer order internal model control (IMC) framework is realized for any order non-minimum phase (NMP) plants with right half plane (RHP) zero as well as time delayed plants having any finite relative order. Its parameters are graphically interpreted satisfying the frequency domain design stipulations for single input and single output (SISO) higher order linear time invariant (LTI) plants. The performance of the same on a bioreactor fermentation process for its temperature control is found to have outperformed in contrast to its integer order (IO)-IMC. It is therefore inferred here that this new approach pledges to impart unique solution of the controller parameters, formulating a highly efficient tool outperforming the existing paradigms. Simulation and real time experimentation are presented to validate the method put forward providing satisfactory performance in reference tracking, disturbance rejection, and robustness to various plant parameter perturbations.  相似文献   
719.
Manipulation of long-range order in 2D van der Waals (vdW) magnetic materials (e.g., CrI3, CrSiTe3 ,etc.), exfoliated in few-atomic layer, can be achieved via application of electric field, mechanical-constraint, interface engineering, or even by chemical substitution/doping. Usually, active surface oxidation due to the exposure in the ambient condition and hydrolysis in the presence of water/moisture causes degradation in magnetic nanosheets that, in turn, affects the nanoelectronic /spintronic device performance. Counterintuitively, the current study reveals that exposure to the air at ambient atmosphere results in advent of a stable nonlayered secondary ferromagnetic phase in the form of Cr2Te3 (TC2 ≈160 K) in the parent vdW magnetic semiconductor Cr2Ge2Te6 (TC1 ≈69 K). The coexistence of the two ferromagnetic phases in the time elapsed bulk crystal is confirmed through systematic investigation of crystal structure along with detailed dc/ac magnetic susceptibility, specific heat, and magneto-transport measurement. To capture the concurrence of the two ferromagnetic phases in a single material, Ginzburg-Landau theory with two independent order parameters (as magnetization) with a coupling term can be introduced. In contrast to the rather common poor environmental stability of the vdW magnets, the results open possibilities of finding air-stable novel materials having multiple magnetic phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号