首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   783篇
  免费   70篇
  国内免费   8篇
电工技术   19篇
综合类   2篇
化学工业   233篇
金属工艺   26篇
机械仪表   39篇
建筑科学   34篇
矿业工程   3篇
能源动力   34篇
轻工业   52篇
水利工程   9篇
石油天然气   5篇
无线电   58篇
一般工业技术   135篇
冶金工业   29篇
原子能技术   12篇
自动化技术   171篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   45篇
  2020年   55篇
  2019年   52篇
  2018年   92篇
  2017年   50篇
  2016年   58篇
  2015年   41篇
  2014年   67篇
  2013年   86篇
  2012年   63篇
  2011年   68篇
  2010年   45篇
  2009年   27篇
  2008年   23篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有861条查询结果,搜索用时 359 毫秒
31.
Reliability of the current microprocessor technology is seriously challenged by radiation-induced soft errors. Accurate Vulnerability Factor (VF) modeling of system components is crucial in designing cost-effective protection schemes in high-performance processors. Although Statistical Fault Injection (SFI) techniques can be used to provide relatively accurate VF estimations, they are often very time-consuming. Unlike SFI techniques, recently proposed analytical models can be used to compute VF in a timely fashion. However, VFs computed by such models are inaccurate as the system-level impact of soft errors is overlooked.  相似文献   
32.
Bulletin of Engineering Geology and the Environment - The Tangab Dam was constructed at a unique geological structure, within a karst valley at the deepest point of a saddle-shaped feature which...  相似文献   
33.
Polystyrene-divinylbenzene copolymer (PsDVB) was covalently functionalized with monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) by a simple method. The functionalized sorbents were characterized in terms of functionality and morphology, and used for the removal of p-toluic acid (p-TA) from aqueous solution. It was found that DEA-PsDVB has higher adsorption capacity than MEA- and TEA-PsDVB due to more accessible nitro and hydroxyl groups on its surface. Further investigation on the adsorptive properties of DEA-PsDVB indicated that the maximum uptake of p-TA occurred at the optimum pH of 5.3. The kinetics data was successfully represented by the pseudo-first-order model, and the behavior of the adsorption isotherms followed the Freundlich model well. Thermodynamic studies showed that the adsorption of p-TA onto DEA-PsDVB was an endothermic and spontaneous process along with the positive change in entropy. The regeneration of DEA-PsDVB was performed with 0.1 M NaOH solution, and results showed that 99% of the initial capacity was conserved after eight successive adsorption/regeneration cycles.  相似文献   
34.
In view of the prevalence of non-linear strain paths that develop in parts that are formed in multiple stages, such as bent and hydroformed structural components, the conventional forming limit curve (FLC) cannot be used to assess the forming severity of this manufacturing process. A path-independent stress-based forming limit criterion has been shown to be far more suitable to evaluate such parts, and this paper shows how this failure criterion can be effectively used to evaluate tubular hydroformed parts “on the shop floor”. Knowing the strain history in a given location of a part, a shifted FLC can be computed from the stress-FLC and used to determine the safety margin at this location. This methodology was used to evaluate the forming severity of an automotive instrument panel beam. It was found that this approach is user-friendly and provides a significant improvement in the ability to assess process robustness and product quality compared to the conventional method. The FLCs obtained using the proposed method were found to be in good agreement with those predicted with an MK-based calculation code. Finally, it is shown that a numerical simulation of the entire forming process is recommended to confirm the estimated strain path in critical locations and improve the accuracy of the method.  相似文献   
35.
Polypropylene (PP) was modified utilizing two types of polyesteramide‐based hyperbranched polymers (amphiphilic PS and hydrophilic PH). A maleicanhydride‐modified PP (PM) was used as a reactive dispersing agent to enhance the modification by grafting the hyperbranched polymers onto the PP chains. Pure PP, two different non‐reactively modified samples, i.e. excluding PM, and two different reactively modified samples, i.e. including PM, were studied. Investigating the morphology of the samples was performed by scanning electron microscopy. To follow the effect of the modification on the dynamic mechanical properties, dynamic mechanical analysis experiments both in the melt (rheometric mechanical spectrometry) and in solid state (dynamic mechanical thermal analysis) were carried out. In the next step, the nanocrystalline structure of the samples was studied by small angle X‐ray scattering (SAXS) in two different modes, i.e. static and recrystallization. Hundreds of SAXS patterns were analyzed automatically using procedures written in PV‐WAVE image‐processing software. The chord distribution function (CDF) was calculated and the long period (lp) of the crystal lamellae was extracted from the CDFs. The rheometric mechanical spectrometry results show that both hyperbranched polymers decrease complex viscosity η* and enhance liquid‐like behavior. This happens more significantly when PM is included. The dynamic mechanical thermal analysis results reveal that Tg decreases when PS and PH are added. In the reactively modified samples this reduction is compensated most probably because of the crosslinked structure formed through the grafting reaction between the hyperbranched polymers and PM. Such structure is confirmed by SAXS data and calculated CDFs in the recrystallization mode. Static SAXS data also show enhancement in the crosshatched morphology of the crystalline lamellae of PP for reactively modified samples compared with non‐reactively modified samples. © 2013 Society of Chemical Industry  相似文献   
36.
Fiber‐graded poly(propylene) was modified by polyester‐amide‐based dendritic nanostructures with the aim of improving its dyeability. Two different dendritic polymers were used and the dendritic nanostructures were formed in situ via reactive blending with maleic anhydride‐modified poly(propylene). Samples were chosen exploiting a 4‐component mixture design. Thermal, morphological, and rheological characterizations showed domains with different size and distribution were formed and primary properties of the dendritics determined the characteristics of the resulted domains. Morphological parameters were quantified by digital analysis of scanning electron microscope images. Thermal and rheological behavior also demonstrated good agreements with the inferred morphology of the formed dendritic domains. The modified samples were then dyed with dispersed dyestuffs. A variety of substantivities were obtained, and some of the modified samples showed a significant enhancement in dyeing properties. A predictive model was developed for K/S ratio, where K and S are absorption and scattering coefficients of the Kubelka‐Munk one constant theory, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
37.
Solubility of carbon monoxide in water is very important for its biological oxidation or removal process of gaseous pollutants. Present research shows the effect of pressure on solubility of carbon monoxide in liquid phase and its removal process by a biofilter. The results are considered as laboratory research on carbon monoxide elimination. In this method a pressurized trickle-bed biofilter was used to increase pressure in the reactor. The biofilter was filled with Leca-stones and inoculated with microorganisms. When the system’s pressure is increased, the solubility of carbon monoxide will be increased, respectively, and it causes a better reaction of the microorganisms for removing of gaseous pollutants. The efficiency was improved significantly by increasing the pressure in the reactor.  相似文献   
38.
To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.  相似文献   
39.
Copper corrosion in sodium dodecyl sulphate (SDS) solutions and carbon nanotube (CNT) nanofluids were studied by potentiodynamic polarization. For the corrosion current densities calculations, Koutecky–Levich equation was modified to model the combined charge and mass transport. 0.005 M SDS reduced the copper corrosion current density by 81%. Higher SDS concentrations enhanced corrosion. Stirring SDS solutions increased the corrosion current density by ∼75%. By adding CNT to SDS solution, the corrosion current density first decreased and then remained constant. Stirring CNT nanofluids didn’t change the corrosion current density. An adsorbed CNT layer on copper controlled the corrosion process in CNT nanofluids.  相似文献   
40.
In this study, plasticized poly(vinyl chloride) (PVC) composites with different nanofillers, including single‐walled carbon nanotubes (SWCNTs), organoclay, TiO2, and ZnO nanoparticles, were prepared, and their effects on plasticizer migration were investigated. Scanning electron micrographs revealed the dispersion quality of the nanofillers in the polymer matrix. It had a significant influence on the performance of the nanofillers in the process of plasticizer migration. Migration and exudation tests showed that the nanofillers could efficiently hinder plasticizer migration. On the basis of these results, we concluded that carbon nanotubes were the best antimigration agent in the plasticized system. This was ascribed to the high aspect ratio of the SWCNTs and the good interactions between them and the plasticizer. Also, TiO2 nanoparticles showed a better performance compared to the ZnO nanoparticles. This was due to the more homogeneous dispersion of the TiO2 in the polymer matrix and the higher surface area of the particles. The differential scanning calorimetry thermograms were in good agreement with the migration tests. The lowest change in the glass‐transition temperature was observed for the composite filled with SWCNTs. This indicated that a lower amount of the plasticizer migrated from PVC. The thermogravimetric analysis curves showed that the incorporation of the nanofillers improved the thermal stability of the PVC. The results could be useful for determining the efficiency of plasticized PVC in applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42559.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号