首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   5篇
  国内免费   1篇
电工技术   1篇
化学工业   8篇
机械仪表   6篇
建筑科学   1篇
能源动力   11篇
轻工业   1篇
无线电   15篇
一般工业技术   10篇
冶金工业   3篇
自动化技术   38篇
  2024年   1篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   11篇
  2017年   8篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
21.
Neural Computing and Applications - Robotics are extensively utilized in modern industry to replace human labor and achieve high automation and flexibility. In order to produce large-size products,...  相似文献   
22.
Wheel slip is inevitable when a Wheeled Mobile Robot (WMR) is moving at a high speed or on a slippery surface. In particular, when neither lateral nor longitudinal slips can be ignored in the dynamic model, a WMR becomes an under-actuated nonlinear dynamic system. To study the maneuverability of a WMR in such a realistic environment, we model the overall WMR dynamics subject to wheel slip and propose control algorithms in regulation control and turning control tasks for the WMR. In regulation control, a time-invariant discontinuous feedback law is developed to asymptotically stabilize the system to the desired configuration with exponential convergence rate. In turning control, a sliding mode-based extremum seeking control technique is applied to achieve stable and sharp turning. Simulation results are presented to validate the theoretical results.  相似文献   
23.
We describe models for the behavior of hot-pressed boron carbide that is subjected to extreme dynamic environments such as ballistic impact. We first identify the deformation and failure mechanisms that are observed in boron carbide under such conditions, and then review physics-based models for each of these mechanisms and the integration of these models into a single physics-based continuum model for the material. Atomistic modeling relates the composition and stoichiometry to the amorphization threshold, while mesoscale modeling relates the processing-induced defect distribution to the fracture threshold. The models demonstrate that the relative importance of amorphization and fracture are strongly dependent on the geometry and impact conditions, with the volume fraction of amorphized material being unlikely to be significant until very high velocities (~3 km/s) are reached for geometries such as ball impact on plates. These connections to the physics thus provide guidelines for the design of improved boron carbide materials for impact applications.  相似文献   
24.
The behaviour of the turbulent scalar flux in premixed flames has been studied using Direct Numerical Simulation (DNS) with emphasis on the effects of Lewis number in the context of Reynolds-averaged closure modelling. A database was obtained from DNS of three-dimensional freely propagating statistically planar turbulent premixed flames with simplified chemistry and a range of global Lewis numbers from 0.34 to 1.2. Under the same initial conditions of turbulence, flames with low Lewis numbers are found to exhibit counter-gradient transport, whereas flames with higher Lewis numbers tend to exhibit gradient transport. The Reynolds-averaged transport equation for the turbulent scalar flux is analysed in detail and the performance of existing models for the unclosed terms is assessed with respect to corresponding quantities extracted from DNS data. Based on this assessment, existing models which are able to address the effects of non-unity Lewis number on turbulent scalar flux transport are identified, and new or modified models are suggested wherever necessary. In this way, a complete set of closure models for the scalar flux transport equation is prescribed for use in Reynolds-Averaged Navier-Stokes simulations.  相似文献   
25.
The melting and solidification stages of a continuous copper–nickel dissimilar metal conduction mode laser welding have been simulated numerically in this study. The heat, mass and momentum transports in molten metal pool have been analysed using both laminar and turbulent flow models separately for the same process parameters. The phase change aspects related to solidification and melting are accounted for by a modified enthalpy–porosity technique while the turbulent transport is modelled by a high Reynolds number kε model. It has been observed that temperature fields obtained from both laminar and turbulent transport simulations are qualitatively similar to each other. The molecular thermal diffusivity of the molten metal mixture is found to be in the same order of magnitude as eddy thermal diffusivity, as a result of which the thermal field gets marginally affected by fluid turbulence. By contrast, eddy viscosity remains much greater than molecular viscosity, which leads to greater amount of momentum diffusion in the case of a turbulent molten metal pool, in comparison to that obtained from the corresponding laminar simulation. This is reflected in the reduction in maximum velocity magnitude in the turbulent simulation in comparison to the maximum velocity obtained from laminar simulation. In the case of species transport, the turbulent mass diffusivity is found to be about 107–108 times greater than molecular mass diffusivity. As a result, the species field in turbulent simulation shows characteristics of better mixing between two dissimilar molten metals than the species field obtained using the laminar transport model. The species distribution obtained from turbulent transport is shown to be in better agreement with experimental data reported in literature than the corresponding mass fraction distribution obtained from laminar simulation. It is also found that species distribution in the molten pool is principally determined by advective and diffusive transport during the melting stage and species transport by advection and eddy diffusion in turbulent pool increasingly weakens with decreasing temperature during the cooling following the laser melting stage.  相似文献   
26.

Stuttering speech recognition is a well-studied concept in speech signal processing. Classification of speech disorder is the main focus of this study. Classification of stuttered speech is becoming more important with the enhancement of machine learning and deep learning. In this study, some of the recent and most influencing stuttering speech recognition methods are reviewed with a discussion on different categories of stuttering. The stuttering speech recognition process is divided mainly into four segments-input speech pre-emphasis, segmentation, feature extraction, and stutter classification. All these segments are briefly elaborated and related researches are discussed. It is observed that different traditional machine learning and deep learning classification approaches are employed to recognize stuttered speech in last few decades. A comprehensive analysis is presented on different feature extraction and classification method with their efficiency.

  相似文献   
27.
A robust nonlinear analytical redundancy (RNLAR) technique is presented to detect and isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM) and process disturbance are considered during fault detection. The RNLAR is used to design primary residual vectors (PRV), which are highly sensitive to the faults and less sensitive to MPM and process disturbance, for sensor and actuator fault detection. The PRVs are then transformed into a set of structured residual vectors (SRV) for fault isolation. Experimental results on a Pioneer 3-DX mobile robot are presented to justify the effectiveness of the RNLAR scheme.  相似文献   
28.
29.
Transport equations for (i) the rate W of product creation and (ii) its Favre-averaged value W? are derived from the first principles by assuming that W depends solely on the temperature and mass fraction of a deficient reactant in a premixed turbulent flame characterized by the Lewis number Le different from unity. The right hand side of the transport equation for W? involves seven unclosed terms, with some of them having opposite signs and approximately equal large magnitudes when compared to the left-hand-side terms. Accordingly, separately closing each term does not seem to be a promising approach, but a joint closure relation for the sum TΣ¯ of the seven terms is sought. For this purpose, theoretical and numerical investigations of variously stretched laminar premixed flames characterized by Le<1 are performed and the linear relation between TΣ integrated along the normal to a laminar flame and a product of (i) the consumption velocity uc and (ii) the stretch rate s˙w evaluated in the flame reaction zone is obtained. Based on this finding and simple physical reasoning, a joint closure relation of TΣ¯ρWs˙¯ is hypothesized, where ρ is the density and s˙ is the stretch rate. The joint closure relation is tested against 3D DNS data obtained from three statistically 1D, planar, adiabatic, premixed turbulent flames in the case of a single-step chemistry and Le=0.34, 0.6, or 0.8. In all three cases, the agreement between TΣ¯ and ρWs˙¯ extracted from the DNS is good with exception of large (c¯>0.4) values of the mean combustion progress variable c¯ in the case of Le=0.34. The developed linear relation between TΣ¯ and ρWs˙¯ helps to understand why the leading edge of a premixed turbulent flame brush can control its speed.  相似文献   
30.
Wind turbines must be designed in such a way that they can survive in extreme environmental conditions. Therefore, it is important to accurately estimate the extreme design loads. This paper deals with a recently proposed method for obtaining short‐term extreme values for the dynamic responses of offshore fixed wind turbines. The 5 MW NREL wind turbine is mounted on a jacket structure (92 m high) at a water depth of 70 m at a northern offshore site in the North Sea. The hub height is 67 m above tower base or top of the jacket, i.e. 89 m above mean water level. The turbine response is numerically obtained by using the aerodynamic software HAWC2 and the hydrodynamic software USFOS . Two critical responses are discussed, the base shear force and the bending moment at the bottom of the jacket. The extreme structural responses are considered for wave‐induced and wind‐induced loads for a 100 year return‐period harsh metocean condition with a 14.0 m significant wave height, a 16 s peak spectral period, a 50 m s ? 1 (10 min average) wind speed (at the hub) and a turbulence intensity of 0.1 for a parked wind turbine. After performing the 10 min nonlinear dynamic simulations, a recently proposed extrapolation method is used for obtaining the extreme values of those responses over a period of 3 h. The sensitivity of the extremes to sample size is also studied. The extreme value statistics are estimated from the empirical mean upcrossing rates. This method together with other frequently used methods (i.e. the Weibull tail method and the global maxima method) is compared with the 3 h extreme values obtained directly from the time‐domain simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号