首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
电工技术   4篇
化学工业   5篇
金属工艺   1篇
无线电   35篇
一般工业技术   1篇
冶金工业   1篇
自动化技术   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
41.
Wavelength conversion based on four-wave mixing (FWM) and cross-gain modulation (XGM) is experimentally demonstrated for the first time in a 1550-nm InAs-InP quantum-dash semiconductor optical amplifier. Continuous-wave FWM with a symmetric conversion efficiency dependence on detuning direction and FWM mediated short-pulse wavelength conversion are demonstrated. Using XGM, we have successfully implemented short-pulse wavelength conversion over 10 THz and error-free data conversion of a 2.5-Gb/s data sequence over 7.5 THz. The pulsed XGM experiments suggest that adjacent regions within an inhomogeneously broadened gain spectrum are partially coupled which increases the operational bandwidth, but at the expense of speed.  相似文献   
42.
ABSTRACT: The authors report single-photon emission from InGaAs quantum dots grown by droplet epitaxy on (100) GaAs substrates using a solid-source molecular beam epitaxy system at elevated substrate temperatures above 400 [DEGREE SIGN]C without post-growth annealing. High-resolution micro-photoluminescence spectroscopy exhibits sharp excitonic emissions with lifetimes ranging from 0.7 to 1.1 ns. The coherence properties of the emitted photons are investigated by measuring the first-order field correlation function.  相似文献   
43.
Large spot size ridge waveguide lasers utilizing a low modal gain single quantum dot layer emitting at 925 nm were designed and fabricated. Ridge waveguides with width <3 mum emit in a single transverse mode with a low transverse full-width at half-maximum divergence of 20deg. Wider ridges initially lase in the first-order transverse mode before collapsing to the fundamental mode. This characteristic is explained by a thermally induced increase in the refractive index of the waveguide core. All lasers operate in a single lateral mode  相似文献   
44.
45.
Using deeply etched photonic wires on gallium arsenide, ultra-small bent waveguides with radii of curvature below 1 mum were fabricated. The maximum transmittance of a 90deg bend with radius of 2 mum can be enhanced to almost 99% at a wavelength of 1.55 mum, which corresponds to an attenuation factor of 0.05 dB per bend  相似文献   
46.
High-performance quantum dot lasers emitting at 980 nm with output powers of up to 4 W CW from a single facet (AR/HR coating, 100 μm stripe width) have been fabricated. Wall-plug efficiencies >50%, were achieved at room temperature. Owing to an improved carrier confinement output powers as high as 1 W CW can be obtained from the fundamental dot transition even at temperatures as high as 110°C  相似文献   
47.
Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device.  相似文献   
48.
An experimental comparative study of the gain, index variation, and linewidth enhancement factor in 980-nm quantum-well (QW) and quantum-dot (QD) lasers structures, designed for high power applications, is presented. The gain spectra of the QW lasers at high injection level revealed three different transition energies, with a low linewidth enhancement factor (/spl sim/1.2) for E2HH2 transitions. Similar values for the linewidth enhancement factor, ranging between 2.5 and 4.5, were found for QW and QD devices, when comparing at similar values of the peak gain. This result is attributed to the contribution of excited state transitions in the measured QD lasers.  相似文献   
49.
This paper presents a method and an ultra-violet (UV) lithography system to fabricate high-aspect-ratio microstructures (HARMS) with good sidewall quality and nice dimension control to meet the requirement for industrial high throughput and high yield production of micro devices. The advantages, equipment, working principle of UV projection scanning exposure, and scanning exposure strategies are introduced first. Following the numerical simulation for the UV projection scanning exposure of thick SU-8 photoresist, experiment results are demonstrated for different exposure strategies. With Continually Changing Focus Projection Scanning (CCFPS), SU-8 microstructures with 860 μm high and 15 μm feature size are demonstrated. For microstructure with 866 μm height, 20 μm width, from the top layer to the bottom layer, the dimension can be controlled in the range of +0.7 to ?1.7 μm; also, the vertical sidewall angle can be controlled inside 90 ± 0.16°. It approves that the CCFPS exposure for HARMS can achieve much straighter and more vertical sidewall compared with UV contact print or UV projection exposure with focusing image on the resist surface or an optimized depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号