首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   790篇
  免费   39篇
  国内免费   3篇
电工技术   11篇
综合类   1篇
化学工业   304篇
金属工艺   28篇
机械仪表   13篇
建筑科学   15篇
矿业工程   3篇
能源动力   44篇
轻工业   20篇
水利工程   12篇
石油天然气   4篇
无线电   47篇
一般工业技术   175篇
冶金工业   87篇
原子能技术   9篇
自动化技术   59篇
  2024年   4篇
  2023年   10篇
  2022年   8篇
  2021年   29篇
  2020年   29篇
  2019年   21篇
  2018年   32篇
  2017年   34篇
  2016年   36篇
  2015年   23篇
  2014年   39篇
  2013年   74篇
  2012年   39篇
  2011年   47篇
  2010年   41篇
  2009年   29篇
  2008年   41篇
  2007年   30篇
  2006年   33篇
  2005年   28篇
  2004年   19篇
  2003年   9篇
  2002年   10篇
  2001年   13篇
  2000年   7篇
  1999年   3篇
  1998年   16篇
  1997年   10篇
  1996年   12篇
  1995年   10篇
  1994年   7篇
  1993年   11篇
  1992年   10篇
  1991年   2篇
  1990年   2篇
  1989年   8篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有832条查询结果,搜索用时 0 毫秒
41.
Polymer clay nanocomposites (PCN) of Polyamide6 and sodium montmorillonite are prepared using different organic modifiers (12‐aminolauric acid, n‐dodecylamine, and 1,12‐diaminododecane) to study effect of organic modifiers on structure and nanomechanical properties of PCN. Using X‐ray diffraction and differential scanning calorimetry, crystalline nature of PCNs are evaluated. Nanoscale viscoelastic properties of PCNs are evaluated using nanodynamic mechanical analyzer (NanoDMA). Nanoscale elastic modulus and hardness of PCNs are evaluated using nanoindenter. PCNs show enhancement in elastic modulus, storage modulus, loss modulus, and loss factor by maximum amount of 62.88%, 56.38%, 145.74%, and 71.43%, respectively, and decrease in percentage crystallinity by 16.52% compared to pure polymer. This result indicates that organic modifiers have effect on crystallinity and nanomechanical properties of PCN. To evaluate effect of clay loading on nanomechanical properties of PCN, PCN containing 12‐aminolauric acid is synthesized with different weight percent (3, 6, and 9% of weight of polymer) of organically modified montmorillonite (OMMT), which shows that nanomechanical properties of PCN improves with increase in clay loading. Our study reveals that change in crystallinity of polymer in PCN may have role in the enhancement of nanomechanical properties of PCNs in comparison to pristine polymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
42.
Coir fibers were chemically modified through alkali treatment, and crosslinking with formaldehyde, para-phenylene diamine, phthalic anhydride, and combined crosslinking-cyanoethylation reactions in appropriate solvent and catalyst. The parent and chemically modified coir were characterized by FTIR spectra. The percent moisture regain, tensile strength, and behavior toward some chemical reagents (solubility %) of parent and chemically modified fibers have also been evaluated. The modified fibers showed significant hydrophobicity, improved tensile strength, and good chemical resistance. © 1995 John Wiley & Sons, Inc.  相似文献   
43.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   
44.
Stress‐relaxation behavior of glass fiber‐reinforced polyester composites, prepared by a recently developed manufacturing method called rubber pressure molding (RPM), is investigated with special reference to the effect of environmental temperature (−70°C to +100°C), fiber volume fraction (30–60%), and initial load level (1–5 kN). It is found that the stress‐relaxation rate decreases with an increase in the applied load of composites and a decrease in temperature. Below glass transition temperature, the rate of stress relaxation increases with an increase in volume fraction of fibers in the composites, whereas above glass transition temperature, it increases with a decrease in the volume fraction of fibers. The experimental results for a given composites are summarized by four values, the slopes of the two straight lines (two separate relaxation processes), and their intercepts upon the stress axis. Both the slopes are dependent upon the applied load, temperature, and volume fraction of fibers in the composites. Relaxation times in both primary and secondary are calculated over the wide range of temperatures, loads, and volume fraction of fibers in the composites. It depends strongly on the temperature, but does not depend strongly on the applied load and volume fraction of fibers. The performances of the composites are also evaluated through conventional compression‐molding process. The rate of stress relaxation is small when the composites are made of newly proposed RPM technique when compared with the conventional process. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
45.
46.
Continuous cooling transformation (CCT) diagrams for HSLA-80 and HSLA-100 steels pertaining to fusion welding with heat inputs of 10 to 40 kJ/cm, and peak temperatures of 1000 °C to 1400 °C have been developed. The corresponding nonlinear cooling profiles and related γ → α phase transformation start and finish temperatures for various peak temperature conditions have been taken into account. The martensite start (M s ) temperature for each of the grades and ambient temperature microstructures were considered for mapping the CCT diagrams. The austenite condition and cooling rate are found to influence the phase transformation temperatures, transformation kinetics, and morphology of the transformed products. In the fine-grain heat-affected zone (FGHAZ) of HSLA-80 steel, the transformation during cooling begins at temperatures of 550 °C to 560 °C, and in the HSLA-100 steel at 470 °C to 490 °C. In comparison, the transformation temperature is lower by 120 °C and 30 °C in the coarse-grain heat-affected zone (CGHAZ) of HSLA-80 steel and HSLA-100 steel, respectively. At these temperatures, acicular ferrite (AF) and lath martensite (LM) phases are formed. While the FGHAZ contains a greater proportion of acicular ferrite, the CGHAZ has a higher volume fraction of LM. Cooling profiles from the same peak temperature influence the transformation kinetics with slower cooling rates producing a higher volume fraction of acicular ferrite at the expense of LM. The CCT diagrams produced can predict the microstructure of the entire HAZ and have overcome the limitations of the conventional CCT diagrams, primarily with respect to the CGHAZ.  相似文献   
47.
Interdiffusion in hypothetical ternary single-phase and two-phase diffusion couples are examined using a phase-field model by numerically solving the nonlinear Cahn-Hilliard and Ginzburg-Landau equations. For diffusion couples assembled with a regular single-phase solution, constant chemical mobilities were used to examine the development of concentration profiles including uphill diffusion and zero-flux plane. Zero-flux plane for a component was observed to develop for a diffusion couple at the composition that corresponds to the activity of that component in one of the terminal alloys. Experimental thermodynamic parameters and composition-dependent chemical mobilities were used to examine the morphological evolution of the interphase boundary in solid-to-solid, two-phase diffusion couples. Instability at the interphase boundary was introduced initially (t=0) by a small compositional fluctuation at the diffuse interface, and its evolution varied largely as a function of terminal alloys and related composition-dependent chemical mobility. This article was presented at the Multicomponent-Multiphase Diffusion Symposium in Honor of Mysore A. Dayananda, which was held during TMS 2006, the 135th Annual Meeting and Exhibition, March 12–16, 2006, in San Antonio, TX. The symposium was organized by Yongho Sohn of University of Central Florida, Carelyn E. Campbell of National Institute of Standards and Technology, Richard D. Sisson, Jr., of Worcester Polytechnic Institute, and John E. Morral of Ohio State University.  相似文献   
48.
49.
50.
The determination of the orbit of high altitude satellites with an accurate horizontal charge coupled device (CCD) sensor is considered using the extended Kalman filter. The measurement nonlinearity is removed by using a coordinate transform, and the corresponding steady state error is less than the steady state error in the Cartesian coordinate system. The performance of both of the navigational filters is evaluated for a reference geosynchronous orbit as a function of measurement error. The reduction of measurement uncertainty decreased steady state errors in position and velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号