全文获取类型
收费全文 | 77494篇 |
免费 | 5908篇 |
国内免费 | 3139篇 |
专业分类
电工技术 | 4323篇 |
技术理论 | 6篇 |
综合类 | 4671篇 |
化学工业 | 13364篇 |
金属工艺 | 4319篇 |
机械仪表 | 5084篇 |
建筑科学 | 5473篇 |
矿业工程 | 2534篇 |
能源动力 | 2340篇 |
轻工业 | 5083篇 |
水利工程 | 1105篇 |
石油天然气 | 5593篇 |
武器工业 | 510篇 |
无线电 | 8068篇 |
一般工业技术 | 9946篇 |
冶金工业 | 4063篇 |
原子能技术 | 812篇 |
自动化技术 | 9247篇 |
出版年
2024年 | 334篇 |
2023年 | 1367篇 |
2022年 | 2321篇 |
2021年 | 3207篇 |
2020年 | 2382篇 |
2019年 | 2117篇 |
2018年 | 2431篇 |
2017年 | 2674篇 |
2016年 | 2200篇 |
2015年 | 2883篇 |
2014年 | 3640篇 |
2013年 | 4462篇 |
2012年 | 4626篇 |
2011年 | 5135篇 |
2010年 | 4385篇 |
2009年 | 4146篇 |
2008年 | 4093篇 |
2007年 | 3904篇 |
2006年 | 4001篇 |
2005年 | 3584篇 |
2004年 | 2399篇 |
2003年 | 2189篇 |
2002年 | 1965篇 |
2001年 | 1740篇 |
2000年 | 1896篇 |
1999年 | 2152篇 |
1998年 | 1832篇 |
1997年 | 1480篇 |
1996年 | 1482篇 |
1995年 | 1260篇 |
1994年 | 997篇 |
1993年 | 746篇 |
1992年 | 583篇 |
1991年 | 447篇 |
1990年 | 339篇 |
1989年 | 269篇 |
1988年 | 230篇 |
1987年 | 148篇 |
1986年 | 124篇 |
1985年 | 96篇 |
1984年 | 68篇 |
1983年 | 40篇 |
1982年 | 43篇 |
1981年 | 30篇 |
1980年 | 25篇 |
1979年 | 14篇 |
1977年 | 7篇 |
1976年 | 8篇 |
1975年 | 5篇 |
1945年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
通过调节微合金元素的含量获得3种具有不同力学性能的银键合丝.利用拉伸试验、键合试验、焊线挑断力、焊球推力测试等手段,研究了银键合丝力学性能对键合质量的影响.结果表明,在延伸率相同的条件下,随着微合金元素含量的降低,3种键合丝的断裂负荷降低,初始模量先减小后增大,键合后焊线挑断力和焊球推力均降低,电极金挤出率先减小后增大.银键合丝初始模量较低时在超声和压力的作用下易于变形,焊线内残余应力较低且第二焊点与引线框架结合较好,因此挑断测试时第二焊点与框架材料界面处不易发生脱离,有利于获得更高的键合成功率. 相似文献
995.
研究了低温(LT) GaN和AlN不同插入层对抑制Mg掺杂p-GaN金属有机化学气相沉积外延中存在的记忆效应的影响,外延生长p-GaN缓冲层,制作具有该缓冲层的AlGaN/GaN高电子迁移率晶体管(HEMT),并对该器件进行电学测试.二次离子质谱仪测试表明p-GaN上10 nm厚的LT-GaN插入层相比于2 nm厚的AlN插入层能更好地抑制Mg扩散.霍尔测试表明,2 nm厚的AlN插入层的引入和GaN存在较大的晶格失配会引入位错,进而会降低AlGaN/GaNHEMT的电子迁移率以及增加其方块电阻;含有10 nm厚的LT-GaN插入层的p-GaN作为缓冲层的AlGaN/GaN HEMT,其方块电阻、电子迁移率以及二维电子气(2DEG)密度分别为334.9 Ω/口,1 923 cm2/(V·s)和9.68×1012 cm-2.器件具有很好的直流特性,其饱和电流为470 mA/mm,峰值跨导为57.7 mS/mm,电流开关比为3.13×109. 相似文献
996.
Energy‐Dissipative Matrices Enable Synergistic Toughening in Fiber Reinforced Soft Composites 下载免费PDF全文
Yiwan Huang Daniel R. King Tao Lin Sun Takayuki Nonoyama Takayuki Kurokawa Tasuku Nakajima Jian Ping Gong 《Advanced functional materials》2017,27(9)
Tough hydrogels have shown strong potential as structural biomaterials. These hydrogels alone, however, possess limited mechanical properties (such as low modulus) when compared to some load‐bearing tissues, e.g., ligaments and tendons. Developing both strong and tough soft materials is still a challenge. To overcome this obstacle, a new material design strategy has been recently introduced by combining tough hydrogels with woven fiber fabric to create fiber reinforced soft composites (FRSCs). The new FRSCs exhibit extremely high toughness and tensile properties, far superior to those of the neat components, indicating a synergistic effect. Here, focus is on understanding the role of energy dissipation of the soft matrix in the synergistic toughening of FRSCs. By selecting a range of soft matrix materials, from tough hydrogels to weak hydrogels and even a commercially available elastomer, the toughness of the matrix is determined to play a critical role in achieving extremely tough FRSCs. This work provides a good guide toward the universal design of soft composites with extraordinary fracture resistance capacity. 相似文献
997.
Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding 下载免费PDF全文
Renhui Sun Hao‐Bin Zhang Ji Liu Xi Xie Rui Yang Yue Li Song Hong Zhong‐Zhen Yu 《Advanced functional materials》2017,27(45)
Highly conductive polymer nanocomposites are greatly desired for electromagnetic interference (EMI) shielding applications. Although transition metal carbide/carbonitride (MXene) has shown its huge potential for producing highly conductive films and bulk materials, it still remains a great challenge to fabricate extremely conductive polymer nanocomposites with outstanding EMI shielding performance at minimal amounts of MXenes. Herein, an electrostatic assembly approach for fabricating highly conductive MXene@polystyrene nanocomposites by electrostatic assembling of negative MXene nanosheets on positive polystyrene microspheres is demonstrated, followed by compression molding. Thanks to the high conductivity of MXenes and their highly efficient conducting network within polystyrene matrix, the resultant nanocomposites exhibit not only a low percolation threshold of 0.26 vol% but also a superb conductivity of 1081 S m?1 and an outstanding EMI shielding performance of >54 dB over the whole X‐band with a maximum of 62 dB at the low MXene loading of 1.90 vol%, which are among the best performances for electrically conductive polymer nanocomposites by far. Moreover, the same nanocomposite has a highly enhanced storage modulus, 54% and 56% higher than those of neat polystyrene and conventional MXene@polystyrene nanocomposite, respectively. This work provides a novel methodology to produce highly conductive polymer nanocomposites for highly efficient EMI shielding applications. 相似文献
998.
999.
1000.