首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   75篇
  国内免费   5篇
电工技术   25篇
综合类   5篇
化学工业   357篇
金属工艺   32篇
机械仪表   49篇
建筑科学   31篇
能源动力   114篇
轻工业   142篇
水利工程   10篇
石油天然气   9篇
无线电   193篇
一般工业技术   280篇
冶金工业   75篇
原子能技术   3篇
自动化技术   268篇
  2024年   6篇
  2023年   33篇
  2022年   76篇
  2021年   116篇
  2020年   91篇
  2019年   76篇
  2018年   120篇
  2017年   84篇
  2016年   79篇
  2015年   52篇
  2014年   71篇
  2013年   125篇
  2012年   71篇
  2011年   85篇
  2010年   62篇
  2009年   52篇
  2008年   47篇
  2007年   43篇
  2006年   36篇
  2005年   28篇
  2004年   12篇
  2003年   17篇
  2002年   9篇
  2001年   13篇
  2000年   10篇
  1999年   6篇
  1998年   29篇
  1997年   16篇
  1996年   10篇
  1995年   15篇
  1994年   10篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有1593条查询结果,搜索用时 46 毫秒
71.
17β‐Hydroxysteroid dehydrogenase (17β‐HSDcl) from the filamentous fungus Curvularia lunata (teleomorph Cochliobolus lunatus) catalyzes NADP(H)‐dependent oxidoreductions of androgens and estrogens. Despite detailed biochemical and structural characterization of 17β‐HSDcl, its physiological function remains unknown. On the basis of amino acid sequence alignment, phylogenetic studies, and the recent identification of the physiological substrates of the homologous MdpC from Aspergillus nidulans and AflM from Aspergillus parasiticus, we propose an anthrahydroquinone as the physiological substrate of 17β‐HSDcl. This is also supported by our analysis of a secondary metabolite biosynthetic gene cluster in C. lunata m118, containing 17β‐HSDcl and ten other genes, including a polyketide synthase probably involved in emodin formation. Chemoenzymatic reduction of emodin by 17β‐HSDcl in the presence of sodium dithionite verified this hypothesis. On the basis of these results, the involvement of a 17β‐HSDcl in the biosynthesis of other anthrahydroquinone‐derived natural products is proposed; hence, 17β‐HSDcl should be more appropriately referred to as a polyhydroxyanthracene reductase (PHAR).  相似文献   
72.
73.
The present study focuses on the variation of the melt rheological characteristics and the creep behavior of both electron beam-cross-linked and peroxide-cured ethylene vinyl acetate/thermoplastic polyurethane blends. The variation of complex viscosity, complex modulus, storage modulus, and loss modulus was evaluated over a wide range of frequency and strain amplitude using rubber process analyzer and the effect of radiation dose and peroxide concentration was investigated in detail. The creep study using dynamic mechanical analyzer shows that the creep behavior of the blends significantly improves after cross-linking and the creep compliance gradually decreases with the increasing radiation dose and peroxide content. An attempt was also made to pursue a comparative rheological and creep study among the peroxide-cured, electron beam-cross-linked and the coagent-treated dynamically vulcanized samples.  相似文献   
74.
Due to their lightweight and excellent toughness, carbon fiber (CF) and its reinforced thermoplastic composites are suitable for high-performance applications such as aerospace, aviation, automotive and sport equipments. In this study, comprehensive detail is provided on the production of carbon fiber, its various forms and geometry and their corresponding effects on the mechanical properties of CF and its reinforced polypropylene (PP) and polyethylene (PE) composites. Here we discuss extensively various methods reported in literature on improving the interfacial fiber-matrix adhesion and dispersion in order to achieve better mechanical properties for such composites.  相似文献   
75.
Biopolymers derived from renewable resources are an emerging class of advanced materials that offer many useful properties for a wide range of food and nonfood applications. Current state of the art in research and development of renewable polymers as adhesives, gums, binders, and emulsions is the subject of this review. Much of the focus will be on major biopolymers such as starch, proteins, lignin, oils, and their derivatives found in both natural and modified forms, but other biopolymers of promising commercial interest will also be included where warranted. Polymers produced in nature are remarkably diverse in their chemistry, thermomechanical properties, rheology, plasticity, and chemical reactivity. In particular, their capacity to undergo a wide array of chemical modifications yields materials with tailored properties suitable for use as adhesives, gums, coatings, emulsions, and binders. Many such materials are now widely used in commercial products like building materials, lubricants, sealants, coatings, bonding aids, pharmaceuticals, paper, glues, flocculants, processed and frozen foods, as well as tissue engineering and bone repair products. This review provides a general overview of biobased polymers highlighting their source, availability, properties, and usage in industrial products along with the future prospects, challenges, and opportunities they offer.  相似文献   
76.
77.
Recently, new strains of Fasciola demonstrated drug resistance, which increased the need for new drugs or improvement of the present drugs. Nanotechnology is expected to open some new opportunities to fight and prevent diseases using an atomic scale tailoring of materials. The ability to uncover the structure and function of biosystems at the nanoscale, stimulates research leading to improvement in biology, biotechnology, medicine and healthcare. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Therefore, this work aimed to isolate fungal strains from Taif soil samples, which have the ability to synthesize silver nanoparticles. The fungus Trichoderma harzianum, when challenged with silver nitrate solution, accumulated silver nanoparticles (AgNBs) on the surface of its cell wall in 72 h. These nanoparticles, dislodged by ultrasonication, showed an absorption peak at 420 nm in a UV-visible spectrum, corresponding to the plasmon resonance of silver nanoparticles. The transmission electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodisperse silver nanoparticles (average particle size: 4.66 nm) by the fungus. The percentage of non hatching eggs treated with the Triclabendazole drug was 69.67%, while this percentage increased to 89.67% in combination with drug and AgNPs.  相似文献   
78.
This study focuses on methylol functional benzoxazines as precursors to build a network structure utilizing both benzoxazine and resole chemistry. The first part is a review of systems that contain methylol groups which play a role on their crosslinking formation. The polymerization mechanism and properties of resoles will be highlighted as the most abundant polymers that are characterized by polymerization through condensation reaction of methylol group. In the second part, the effect of incorporating methylol group into benzoxazine monomers is studied. Differential scanning calorimetry (DSC) is used to study the effect of methylol group on the rate of polymerization. Kissinger and Ozawa methods using non-isothermal DSC at different heating rates show that methylol monomer exhibits lower average activation energy compared to the un-functionalized monomer. The effect of adding catalysts into the monomers is also studied. p-Toluene sulfonic acid (PTSA) is found to be more efficient than 1-methyl-imidazole (IMD) and lithium iodide (LiI) in the case of methylol monomer due to its ability of accelerating both the methylol condensation and ring-opening polymerization. Additionally, thermal behavior of the monomers is studied using thermogravimetric analysis (TGA).  相似文献   
79.
ZnO nanorods were synthesized using a low-cost sol-gel spin coating technique. The synthesized nanorods were consisted of hexagonal phase having c-axis orientation. SEM images reflected perpendicular ZnO nanorods forming bridging network in some areas. The impact of different hydrogen concentrations on the Pd-sensitized ZnO nanorods was investigated using an impedance spectroscopy (IS). The grain boundary resistance (Rgb) significantly contributed to the sensing properties of hydrogen gas. The boundary resistance was decreased from 11.95 to 3.765 kΩ when the hydrogen concentration was increased from 40 to 360 ppm. IS gain curve showed a gain of 6.5 for 360 ppm of hydrogen at room temperature. Nyquist plot showed reduction in real part of impedance at low frequencies on exposure to different concentrations of hydrogen. Circuit equivalency was investigated by placing capacitors and resistors to identify the conduction mechanism according to complex impedance Nyquist plot. Variations in nanorod resistance and capacitance in response to the introduction of various concentrations of hydrogen gas were obtained from the alternating current impedance spectra.  相似文献   
80.
The catalytic activity and life of the NiMoS supported on alumina–USY zeolite (physical mixture of alumina and USY (NMAZ), USY zeolite coated with alumina (NMACZ-2)) were compared in the hydrocracking of 1-methyl naphthalene by a single run at the several reaction temperatures between 360 and 400 °C as well as repeated runs at 360 °C. The relative activity of NMAZ is slightly higher after 1 h at all reaction temperatures, but was lower after 2 h at reaction temperatures above 380 °C. The preference of NMACZ-2 became distinct and definite by further increasing the reaction time at all reaction temperatures. Too long reaction time, particularly at higher reaction temperature, decreased the yield of (alkyl)benzenes, indicating the significant progress of the successive reactions. Thus, the highest yield of alkyl(benzenes) of about 97% was obtained over NMACZ-2 after 4 h at 380–390 °C. This was much less than the yield of about 82% obtained over NMAZ after 4 h at 370 °C. Ten repeated runs at 360 °C for 6 h resulted in marked decrease of yield over NMAZ from 73% to 64%, while the decrease in yield over NMACZ-2 was only from about 80% to 78%. The decrease of catalytic activity appears to reflect the coke formation on the USY which occurs on the naked acidic site of the substrate, which are rather isolated from the NiMoS on alumina. In contrast, alumina-coated support keeps USY underneath the alumina, which carries NiMoS and acidic sites on the same surface. The acidity of surface alumina is moderated by the underneath USY. The adequate acidity of the neighboring NiMoS and high hydrogenation activity provide a good balance resulting in an excellent catalytic activity and life of NiMoS supported on alumina-coated USY zeolite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号