Positronium is an ideal system for research on QED, especially in a bound state. A discrepancy (3.9σ) is found recently between measured HFS values and the QED prediction (including up-to O(α3 log α − 1), where α is the fine-structure constant.). It might be due to a contribution of unknown new physics or common systematic problems
in all the previous measurements. A new method to measure HFS directly is performed using a high power gyrotron. The transition
from ortho-positronium to para-positronium has been observed with 5 σ CL, which is the first observation of M1 transition in (sub)Terahertz region. New technologies of high power gyrotrons are
developed for precision spectroscopy. 相似文献
This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current. 相似文献
Positronium is an ideal system for research on Quantum Electrodynamics (QED), especially in a bound state. A discrepancy of 3.9 standard deviations has been found between the measured hyperfine structure (Ps-HFS) and the QED predictions. This may be due to the contribution of unknown new physics or common systematic effects in previous measurements, in all of which the Zeeman effect was used. We propose a new method to directly measure the Ps-HFS using a high power gyrotron. We compare two resonators which have been developed to supply sufficient power to drive the direct transition, a Fabry-Pérot resonator and a ring resonator with a diffraction grating. We plan to perform first direct measurement of Ps-HFS within the next six months. 相似文献
To meet the increasing demand for higher-density and faster EPROMs, a 16-Mb CMOS EPROM has been developed based on 0.6-μm N-well CMOS technology. In scaled EPROMs, it is important to guarantee device reliability under high-voltage operation during programming. By employing internal programming-voltage reduction and new stress relaxation circuits, it is possible to keep an external programming voltage Vpp of 12.5 V. The device achieves a 62-ns access time with a 12-mA operating current. A sense-line equalization and data-out latching scheme, made possible by address transition detection (ATD), and a bit-line bias circuit with two types of depletion load led to the fast access time with high noise immunity. This 16-Mb EPROM has pin compatibility with a standard 16-Mb mask-programmable ROM (MROM) and is operative in either word-wide or byte-wide READ mode. Cell size and chip size are 2.2 μm×1.75 μm and 7.18 mm×17.39 mm, respectively 相似文献
A new chemical sensing system using an electrical oscillator has been developed. This sensing system measures the electrical ‘non-linearity’ at the surface of an electrode immersed in a test solution: a sinusoidal voltage is applied to the electrode and the higher harmonics of the output current are obtained by Fourier transformation. This sensing system has been used to detect and quantify surfactant molecules in solutions. The relative intensity P2/P1 of the peaks of the second (P2) and first (P1) harmonics in the output current was found to be linearly correlated with the logarithms of the concentrations of cationic surfactants such as cetylpyridium bromide (CPB) and cetyl-N,N,N-trimethylammonium bromide (CTAB), but not with those of the anionic surfactant sodium dodecyl sulfate (SDS) or the neutral surfactant Triton X-100. The reproducibility of this sensing system was shown to be excellent. 相似文献
The annealing of 20CaO·20SiO2·7Fe2O3·6FeO glasses at 973K in vacuo produced clusters of iron oxide, the shape of which was nearly spherical and the diameter distributed in the narrow range 25–115Å. The phase of clusters was identified to be Fe3+(Fe3+poststagger|1.30Fe2+poststagger|0.55V0.15)·O4 in the inverse spinel structure based upon the Mössbauer spectra and x-ray diffraction profiles. The clusters exhibited superparamagnetism and their effective anisotropy energy constant was inversely proportional to the cluster diameter. The magnetization of the glasses measured by a vibrating sample magnetometer was 7.2 × 10-6 Wbmkg-1 at 10 kOe at room temperature and smaller than the value calculated assuming that the whole clusters have superparamagnetism. These results suggest the pinning of spins near the cluster surface. 相似文献
A system such as missiles and spare parts of aircrafts has to perform a normal operation at any time when it is used. However, a system is in storage for a long time from the transportation to the usage and its reliability goes down with time. Such a system should be inspected and maintained at periodic times to hold a higher reliability than a prespecified value q. This paper suggests a periodic inspection of a storage system with two kinds of units where unit 1 is inspected and maintained at each inspection, however, unit 2 is not done. The system is replaced at detection of failure or at time when the reliability is below q. The total expected cost until replacement is derived and an optimal inspection time which minimizes it is discussed. Numerical examples are given when failure time distributions are exponential and Weibull ones. 相似文献
A high-speed wireline interfaces, e.g. LVDS (Low Voltage Differential Signaling), are widely used in the aerospace field for powerful computing in artificial satellites and aircraft [19]. This paper describes Bit Error Rate (BER) prediction methodology for wireline data transmission under irradiation environment at the design stage of data transmitter, which is useful in proactively determining if the design circuit meets the BER criteria of the target system. Using a custom-designed LVDS transmitter (TX) to enhance latch-up immunity [42], the relationship between transistor size and BER has been analyzed with focusing on Single Event Effect (SEE) as a cause of the bit error. The measurement was executed under 84Kr17+ exposure of 322.0 MeV at various flux condition from 1?×?103 to 5?×?105 count/cm2/sec using cyclotron facility. For the analysis of the bit error, circuit simulation by SPICE was utilized with expressing the irradiation environment by a current source model. The current source model represents a single event strike into the circuit at drain and substrate junctions in bulk MOSFETs. For the construction of the current source model, a charge collection was simulated at the single particle strike with the creation of 3D Technology CAD (TCAD) models for the MOS devices of bulk transistor process technology. The simulation result of the charge correction was converted to a simple time-domain equation, and the single-event current source model was produced using the equation. The single-event current source was applied to SPICE simulation at bias current related circuits in the LVDS transmitter, then simulation results are carefully verified whether the output data is disturbed enough to cause bit errors on wireline data transmission. By the simulation, sensitive MOSFETs have been specified and a sum of the gate area for these MOSFETs has 29% better correlation than the normal evaluation index (sum of the drain area) by comparison to the actual BER measurement. Through the precise revelation of the sensitive area by SPICE simulation using the current model, it became possible to estimate BER under irradiation environment at the pre-fabrication design stage.
Innovative sensing systems based on THz electromagnetic waves have been attracting a great deal of attention. Although many THz detectors have been developed over the years, it is currently difficult to manufacture low-cost THz sensing/imaging devices. In the present study, we propose to use organic field-effect transistors (OFETs) and small potential fluctuation against the carriers within them (N. Ohashi, H. Tomii, R. Matsubara, M. Sakai, K. Kudo, M. Nakamura, Appl. Phys. Lett. 91 (2007) 162105). We use THz time-domain spectroscopy for OFETs in which the carrier density in the pentacene active layer is modulated by the gate bias. We found evidence that the accumulated free holes in pentacene films can be excited by THz photons to overcome the surrounding barriers in the fluctuating potential. The Drude–Lorentz model could not account for the shape of the absorption spectra, which suggests that the holes are weakly restricted by the potential fluctuation. The integrated absorption intensity was proportional to the transfer characteristics of the OFETs. The present findings represent an important step toward developing a new class of THz-wave sensors. 相似文献