首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
电工技术   2篇
化学工业   8篇
机械仪表   1篇
能源动力   1篇
无线电   14篇
一般工业技术   3篇
自动化技术   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2002年   2篇
  2001年   1篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
Telecommunication Systems - Cloud services are expanding tremendously in mobile environment with the advent of wireless technology. However, privacy in accessing the cloud services securely is the...  相似文献   
12.
Biopolishing of cotton fabrics enhances appearance and handle of the fabrics without compromising on essential properties. Process of biopolishing is influenced by concentration of cellulases, temperature, pH, and duration of treatment, besides the activity levels of enzymes, method of mechanical agitations and construction features of fabrics. Optimization of process parameters, including mechanical agitations and fabric construction features, has been carried out using Taguchi methods followed by analysis of variance and confirmation tests. All the design parameters, used in the study, have predominant influence on weight loss, fabric strength after biopolishing while thickness, bursting strength, abrasion losses, and flexural rigidity of the fabrics were significantly influenced by the concentration of cellulases together with duration of treatment. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
13.
Polarimetric radar studies of atmospheric ice particles   总被引:1,自引:0,他引:1  
Single scattering properties of ice crystals are described at microwave frequencies using discrete dipole approximations and Rayleigh scattering techniques. For a given shape, the average bulk densities of ice crystals can be estimated using the ratio of the copolarized radar signal in a linear (horizontal, vertical) polarization basis. Reflectivity depends on the ice content (g×m-3), and also on both size distribution parameters and average bulk density of the scatterers. Differential propagation phase is primarily a function of shape, ice water content, and is independent of size distribution parameters. Thus, by using a combination of polarimetric radar measurements, average ice content, bulk density, and shape of distributed scatterers call be inferred. These techniques become quite complex in the case of a winter storm where scatterers can exist with varying shape and bulk densities. Polarimetric radar properties of such complex distributed scatterers are modeled. Physical variations in the relation among ice water content, reflectivity, and differential propagation phase are considered with respect to change in the shape of size distribution, bulk density,,and average shape of the scatterers. Also, simultaneous polarimetric radar observations and in situ aircraft measurements are shown to demonstrate practical applicability of the techniques  相似文献   
14.
15.
DNA coordinating platinum (Pt) containing compounds cisplatin and carboplatin have been used for the treatment of ovarian cancer therapy for four decades. However, recurrent Pt-resistant cancers are a major cause of mortality. To combat Pt-resistant ovarian cancers, we designed and synthesized a conjugate of an anticancer drug mithramycin with a reactive Pt(II) bearing moiety, which we termed mithplatin. The conjugates displayed both the Mg2+-dependent noncovalent DNA binding characteristic of mithramycin and the covalent crosslinking to DNA of the Pt. The conjugate was three times as potent as cisplatin against ovarian cancer cells. The DNA lesions caused by the conjugate led to the generation of DNA double-strand breaks, as also observed with cisplatin. Nevertheless, the conjugate was highly active against both Pt-sensitive and Pt-resistant ovarian cancer cells. This study paves the way to developing mithplatins to combat Pt-resistant ovarian cancers.  相似文献   
16.
Precise control of the placement and patterning of graphene on various substrates has tremendous impact in many fields, such as nanoscale electronics, multifunctional optoelectronic devices, and molecular sensing. A one‐step facile technique involving N2‐plasma promotes surface modification and enhances the surface wettability of the substrate. The technique is employed to create partially hydrophilic surfaces on SiO2/Si substrate with the aid of various templates, enabling the selective deposition, alignment, and formation of patterns comprising monolayer graphene oxide (GO) sheets; it successfully uses the Langmuir–Blodgett (LB) deposition technique over a large area without the need of any sophisticated equipment. Various characterization techniques are carried out in order to understand the possible mechanism behind the pinning of the GO on the partially treated areas. It is a relatively easy and swift process that can reliably accomplish specific surface modification with high bonding strength between GO and the substrate. This technique allows the creation of patterns with controllable dimensions. For example, the thickness of the GO sheets can be controlled; this is particularly important in creating arrays and devices at wafer‐scale. Being simple yet effective and inexpensive, this technique holds tremendous potential that can be exploited for numerous applications in the field of bio‐nanoelectronics.  相似文献   
17.
Recent research shows that rule based models perform well while classifying large data sets such as data streams with concept drifts. A genetic algorithm is a strong rule based classification algorithm which is used only for mining static small data sets. If the genetic algorithm can be made scalable and adaptable by reducing its I/O intensity, it will become an efficient and effective tool for mining large data sets like data streams. In this paper a scalable and adaptable online genetic algorithm is proposed to mine classification rules for the data streams with concept drifts. Since the data streams are generated continuously in a rapid rate, the proposed method does not use a fixed static data set for fitness calculation. Instead, it extracts a small snapshot of the training example from the current part of data stream whenever data is required for the fitness calculation. The proposed method also builds rules for all the classes separately in a parallel independent iterative manner. This makes the proposed method scalable to the data streams and also adaptable to the concept drifts that occur in the data stream in a fast and more natural way without storing the whole stream or a part of the stream in a compressed form as done by the other rule based algorithms. The results of the proposed method are comparable with the other standard methods which are used for mining the data streams.  相似文献   
18.
Uncertainty in absolute gain and crosstalk factors are the primary sources of error in dual-channel radar measurements. A full two-port calibration technique compensates for the errors introduced due to an imperfect antenna system and improves the isolation between orthogonal polarization channels as long as the observed cross section is above the equivalent system noise cross section. A novel technique for calibrating a dual-polarized network analyzer-based scatterometer system is discussed. Rigorous two-port S-parameter representation is used to describe absolute gain and crosstalk characteristics. Validity of the crosstalk correction is demonstrated by measuring the point target scattering matrix. Correction factors are obtained by measuring the S-parameters of trihedral and dihedral corner reflectors of known sizes. Results of absolute gain of the antenna system are verified using independent test target cross section measurements  相似文献   
19.
With the advent of the microwave radiometer, passive remote sensing of clouds and precipitation has become an indispensable tool in a variety of meteorological and oceanographical applications. There is wide interest in the quantitative retrieval of water vapor, cloud liquid, and ice using brightness temperature observations in scientific studies such as Earth's radiation budget and microphysical processes of winter and summer clouds. Emission and scattering characteristics of hydrometeors depend on the frequency of observation. Thus, a multifrequency radiometer has the capability of profiling cloud microphysics. Sensitivities of vapor, liquid, and ice with respect to 20.6, 31.65 and 90 GHz brightness temperatures are studied. For the model studies, the atmosphere is characterized by vapor density and temperature profiles and layers of liquid and ice components. A parameterized radiative transfer model is used to quantify radiation emanating from the atmosphere. It is shown that downwelling scattering of radiation by an ice layer results in enhancement at 90 GHz brightness temperature. Once absorptive components such as vapor and liquid are estimated accurately, then it is shown that the ice water path can be retrieved using ground-based three-channel radiometer observations. In this paper the authors developed two- and three-channel neural network-based inversion models. Success of a neural network-based approach is demonstrated using a simulated time series of vapor, liquid, and ice. Performance of the standard explicit inversion model is compared with an iterative inversion model. In part II of this paper, actual radiometer, and radar field measurements are utilized to show practical applicability of the inverse models  相似文献   
20.
Access of distributed generation gets complicated at the distribution level, and hence managing these systems effectively becomes highly challenging. Microgrids have been proposed as a way of integrating a large number of distributed renewable energy sources with a distribution system. They are low to medium voltage networks of small load clusters with distributed generation sources and storages. Microgrids can be operated in the islanded mode or the grid‐connected mode. If a microgrid is connected to the system, it is seen as a single aggregate load. One of the potential advantages of a microgrid is that it could provide more reliable supply to customers by islanding itself from the system in the event of a major disturbance. However, a major problem with microgrid implementation in islanded operation is designing a proper protection scheme. The fault currents for grid‐connected and islanded microgrids are significantly different. Additionally, high penetration of inverter‐connected distributed generation sources leads to conditions where no standard overcurrent protection method will work. Overcurrent protection is considered as the backbone of any protection strategy, especially in distribution systems. Distribution systems constitute the largest portion of the power system network, and therefore the diagnosis of faults in this system is a challenging task. Faults occurring in distribution systems will affect the reliability, security, and quality of a power system. Field‐processable gate array (FPGA) Xilinx Zynq‐based numerical overcurrent relay protection is provided to the microgrid that is operated in islanded mode. This results in faster discrimination and quicker isolation of the faulty section from the microgrid. This improves the reliability of the microgrid because the fault is rapidly diagnosed and isolated from the healthy part, thanks to the high‐speed operation of the 800‐MHz FPGA Xilinx Zynq‐based numerical overcurrent relay. This system is simulated using MATLAB Simulink SimPower system tool box and LabView software. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号