首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9791篇
  免费   707篇
  国内免费   348篇
电工技术   434篇
综合类   405篇
化学工业   1728篇
金属工艺   474篇
机械仪表   498篇
建筑科学   661篇
矿业工程   189篇
能源动力   325篇
轻工业   564篇
水利工程   141篇
石油天然气   322篇
武器工业   38篇
无线电   1592篇
一般工业技术   1380篇
冶金工业   715篇
原子能技术   94篇
自动化技术   1286篇
  2024年   27篇
  2023年   154篇
  2022年   269篇
  2021年   370篇
  2020年   250篇
  2019年   231篇
  2018年   290篇
  2017年   288篇
  2016年   282篇
  2015年   285篇
  2014年   427篇
  2013年   594篇
  2012年   536篇
  2011年   656篇
  2010年   577篇
  2009年   543篇
  2008年   595篇
  2007年   480篇
  2006年   499篇
  2005年   354篇
  2004年   307篇
  2003年   311篇
  2002年   280篇
  2001年   239篇
  2000年   217篇
  1999年   241篇
  1998年   293篇
  1997年   224篇
  1996年   213篇
  1995年   162篇
  1994年   135篇
  1993年   99篇
  1992年   64篇
  1991年   52篇
  1990年   42篇
  1989年   40篇
  1988年   33篇
  1987年   28篇
  1986年   24篇
  1985年   16篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   15篇
  1979年   13篇
  1978年   7篇
  1976年   13篇
  1975年   9篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
在实际传输网络结构中,有些站点由于条件限制不能与其它站点连接成环.过去采用通道保护(PP)环带链组网,环链网元间业务在环上没有保护;随着技术的发展,提出了子网连接保护(SNCP)环带链组网方式,确保环链网元间业务在环上得到保护,使网络的稳定性和可靠性大大提高.  相似文献   
102.
Ternary layered oxide materials have attracted extensive attention as a promising cathode candidate for high‐energy‐density lithium‐ion batteries. However, the undesirable electrochemical degradation at the electrode–electrolyte interface definitively shortens the battery service life. An effective and viable approach is proposed for improving the cycling stability of the LiNi1/3Co1/3Mn1/3O2 cathode using lithium difluorophosphate (LiPO2F2) paired with fuoroethylene carbonate (FEC) as co‐additives into conventional electrolytes. It is found that the co‐additives can greatly reduce the interface charge transfer impedance and significantly extend the life span of LiNi1/3Co1/3Mn1/3O2//Li (NMC//Li) batteries. The developed cathode demonstrates exceptional capacity retention of 88.7% and remains structural integrity at a high current of 5C after 500 cycles. Fundamental mechanism study indicates a dense, stable fluorinated organic–inorganic hybrid cathode‐electrolyte interphase (CEI) film derived from LiPO2F2 in conjunction with FEC additives on the surface of NMC cathode material, which significantly suppresses the decomposition of electrolyte and mitigates the dissolution of transition metal ions. The interfacial engineering of the electrode materials stabilized by the additives manipulation provides valuable guidance for the development of advanced cathode materials.  相似文献   
103.
Liquid crystal polymer (LCP) has potentially a very wide application as substrate material in electronic packaging applications because of its unique advantages. The work in this paper was performed to realize the metallization of LCP for the purpose of board fabrication, and to study the adhesion between deposited copper and LCP. A homogenous electroless plated copper layer on LCP with 4 to 5 /spl mu/m thickness was achieved, while it increased up to 40 /spl mu/m with the subsequent electroplating. The timescale of etching, deposit ion rate, and pH value were gradually changing during the plating process and the influences on copper layer quality were investigated. The adhesion force of the copper-LCP layer system was measured by a shear-off-method. Scanning electron microscopy (SEM) was used to check the surface morphology after etching and the interface after shearing on both the backside of the copper layer and the LCP side. The relationship between the shear-off adhesion of copper and the time of chemical etching before plating was examined, and the optimal etching time is discussed. Heat treatment after plating was used, and it was shown that this significantly improved the adhesion strength.  相似文献   
104.
A hop‐aware and energy‐based buffer management scheme (HEB) is proposed in this paper. HEB can provide better quality of service to packets with real‐time requirements and improve MANET power efficiency. In our algorithm, the buffer is divided into real‐time and non‐real‐time partitions. We consider the number of hops passed, the power levels of the transmitting node, the predicted number of remaining hops, and waiting time in the buffer to determine packet transmission priority. In addition, specialized queue management and a probabilistic scheduling algorithm are proposed to decrease retransmissions caused by packet losses. Mathematical derivations of loss rates and end‐to‐end delays are also proposed. Coincidence between mathematical and simulation results is also shown. Finally, the HEB is compared with first in first out, random early detection, and hop‐aware buffering scheme. Simulation results show that the proposed algorithm reduces loss rates, power consumption, and end‐to‐end delays for real‐time traffic, considerably improving the efficiency of queue management in MANET. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
105.
Commercial aluminium electrolyte capacitors (AECs) are too large for integration in future highly integrated electronic systems. Supercapacitors, in comparison, possess a much higher capacitance per unit volume and can be embedded as passive capacitors to address such challenges in electronics scaling. However, the slow frequency response (<101 Hz) typical of supercapacitors is a major hurdle to their practical application. Here, it is demonstrated that 1T‐phase MoSe2 nanosheets obtained by laser‐induced phase transformation can be used as an electrode material in embedded micro‐supercapacitors. The metallic nature of MoSe2 nanosheet‐based electrodes provides excellent electron‐ and ion‐transport properties, which leads to an unprecedented high‐frequency response (up to 104 Hz) and cycle stability (up to 106 cycles) when integrated in supercapacitors, and their power density can be ten times higher than that of commercial AECs. Furthermore, fabrication processes of the present device are fully compatible with system‐in‐package device manufacturing to meet stringent specifications for the size of embedded components. The present research represents a critical step forward in in‐package and on‐chip applications of electrolytic capacitors.  相似文献   
106.
谢崇斌  赖材栋  张小强 《电子测试》2022,(1):139-140,112
伴随着宽带业务大发展,互联网电视业务也成了众多家庭的必选业务.为了保障互联网电视业务感知,各运营商建立了自有业务平台及CDN网络,然而随着电视节目码率的提升和用户数量的日益增加,春节、体育赛事等高并发、大流量业务场景对分布式、多层级CDN平台的调度体系提出了更高的要求.本项课题基于DPDK及大数据技术,综合分析用户感知...  相似文献   
107.
The GaN metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with a low-temperature (LT)-GaN layer have been demonstrated. It was found that we could achieve a two orders of magnitude smaller, photodetector-dark current by introducing a LT-GaN layer, which could be attributed to the larger Schottky-barrier height between the Ni/Au metal contact and the LT-GaN layer. It was also found that photodetectors with the LT-GaN layer could provide a larger photocurrent to dark-current contrast ratio and a larger UV-to-visible rejection ratio. The maximum responsivity was found to be 3.3 A/W and 0.13 A/W when the photodetector with a LT-GaN layer was biased at 5 V and 1 V, respectively.  相似文献   
108.
There has been a steadily increasing interest in using electrically conductive adhesives as interconnecting materials in electronics manufacturing. In this paper, several anisotropic conductive adhesive (ACA) pastes were formulated, which consist of diglycidyl ether of bisphenol F or diglycidyl ether of bisphenol A as polymer matrix, imidazoles as curing agents, and different sizes of silver (Ag) powders or gold (Au)-coated polymer spheres as conductive particles. The effects of ACA resin and different curing agents, as well as different conductive particles, on flexible substrate of the flip-chip joint were studied. The results show that the size and type of different conductive particles have very limited influence on an ACA flip-chip joint. The ACA resin as well as the curing agent can affect the reliability of the joint. The same results can be applied for the failure analysis of ACA flip-chip technology.  相似文献   
109.
In‐plane growth of Mg2SiO4 nanowires on Si substrates is achieved by using a vapor transport method with Au nanoparticles as catalyst. The self‐assembly of the as‐grown nanowires shows dependence on the substrate orientation, i.e., they are along one, two, and three particular directions on Si (110), (100), and (111) substrates, respectively. Detailed electron microscopy studies suggest that the Si substrates participate in the formation of Mg2SiO4, and the epitaxial growth of the nanowires is confined along the Si <110> directions. This synthesis route is quite reliable, and the dimensions of the Mg2SiO4 nanowires can be well controlled by the experiment parameters. Furthermore, using these nanowires, a lithography‐free method is demonstrated to fabricate nanowalls on Si substrates by controlled chemical etching. The Au nanoparticle catalyzed in‐plane epitaxial growth of the Mg2SiO4 nanowires hinges on the intimate interactions between substrates, nanoparticles, and nanowires, and our study may help to advance the developments of novel nanomaterials and functional nanodevices.  相似文献   
110.
Among all carbon nanostructured materials, helical nanosprings or nanocoils have attracted particular interest as a result of their special mechanical behavior. Here, carbon nanosprings are used to adjust the viscoelasticity and reduce the resulting hysteresis loss (HL) of elastomeric polymer materials. Two types of nanospring‐filled elastomer composites are constructed as follows: system I is obtained by directly blending polymer chains with nanosprings; system II is composed of the self‐assembly of a tri‐block structure such as chain‐nanospring‐chain. Coarse‐grained molecular dynamics simulations show that the incorporation of nanosprings can improve the mechanical strength of the elastomer matrix through nanoreinforcement and considerably decrease the hysteresis loss. This finding is significant for reducing fuel consumption and improving fuel efficiency in the automobile tire industry. Furthermore, it is revealed that the spring constant of nanosprings and the interfacial chemical coupling between chains and nanosprings both play crucial roles in adjusting the viscoelasticity of elastomers. It is inferred that elastomer/carbon nanostructured materials with good flexibility and reversible mechanical response (carbon nanosprings, nanocoils, nanorings, and thin graphene sheets) have both excellent mechanical and low HL properties; this may open a new avenue for fabrication of high performance automobile tires and facilitate the large‐scale industrial application of these materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号