首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117149篇
  免费   10061篇
  国内免费   4921篇
电工技术   7095篇
技术理论   7篇
综合类   7560篇
化学工业   20171篇
金属工艺   6454篇
机械仪表   7326篇
建筑科学   9574篇
矿业工程   3396篇
能源动力   3512篇
轻工业   7652篇
水利工程   2094篇
石油天然气   7208篇
武器工业   883篇
无线电   13339篇
一般工业技术   14194篇
冶金工业   5349篇
原子能技术   1315篇
自动化技术   15002篇
  2024年   449篇
  2023年   1937篇
  2022年   3315篇
  2021年   4832篇
  2020年   3667篇
  2019年   3089篇
  2018年   3327篇
  2017年   3854篇
  2016年   3244篇
  2015年   4650篇
  2014年   5683篇
  2013年   6753篇
  2012年   7437篇
  2011年   7994篇
  2010年   6977篇
  2009年   6644篇
  2008年   6428篇
  2007年   6087篇
  2006年   6348篇
  2005年   5524篇
  2004年   3775篇
  2003年   3294篇
  2002年   3080篇
  2001年   2806篇
  2000年   2957篇
  1999年   3154篇
  1998年   2669篇
  1997年   2268篇
  1996年   2091篇
  1995年   1815篇
  1994年   1461篇
  1993年   1046篇
  1992年   848篇
  1991年   661篇
  1990年   489篇
  1989年   429篇
  1988年   346篇
  1987年   231篇
  1986年   147篇
  1985年   87篇
  1984年   54篇
  1983年   37篇
  1982年   59篇
  1981年   36篇
  1980年   31篇
  1979年   10篇
  1978年   3篇
  1965年   3篇
  1959年   4篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
961.
近年来,基于特殊润湿性理论制备表面具有微纳米粗糙结构的多孔材料成为油水分离领域研究的重点。为了满足不同环境下对不同形式油-水乳状液高效高通量分离的需求,该研究利用纳米SiO2颗粒对聚丙烯(PP)纤维棉有针对性地亲(疏)水改性,构建了系列不同润湿性和粗糙度的PP纤维棉,探究了不同孔隙度和表面能的PP纤维棉对W/O及O/W型乳状液的分离性能,结果表明,经过亲(疏)水改性后的PP纤维棉对水/正己烷和水/甲苯乳状液的分离效率都高于99.5%,通量高于700 L/(m2·h),并针对不同形式油-水乳状液阐释其相应的分离机制,为后续油-水乳状液分离材料的科学设计和可控制备提供了理论依据。  相似文献   
962.
The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose–response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.  相似文献   
963.
光热发电作为一种清洁能源,配置储热后具有良好的调节性能,近年得到大力发展。依据自身经济性,光热电站往往配备较大的储热装置,能够平移所吸收的光热能,且具有跨日调节能力,使得光热机组有一定替代常规机组带负荷的能力,即容量效益。本文提出一种基于等可靠性的光热电站容量效益评估方法,考虑了调峰方式、储热时长、新能源规模、光热电站规模对光热电站容量效益发挥的影响,采用基于数学优化的生产模拟仿真程序,以周为尺度,计算全年8760 h的系统运行状态,计及了机组启停、水电跨日调节、抽蓄跨日调节、光热电站的跨日调节等因素。最后通过对西北地区实际电网的仿真,验证了所提方法的有效性。  相似文献   
964.
In recent years, highly efficient oil/water separation materials have brought much attention. It requests superhydrophobic surfaces with a rapid and facile separation process, excellent durability, and large-scale fabrication. Herein, a facile vapor-liquid sol-gel, and free radical polymerization reaction method to prepare the durable and robust superhydrophobic cotton fabric is proposed. Moreover, the fabric can be used for highly efficient and various oil/water separation. It is prepared via a simple two-step process, including a vapor-liquid sol-gel process to deposit with thiols particles, and then followed a free radical polymerization reaction to graft 2,2,3,4,4,4-hexafluorobutyl methacrylate. Scanning electron microscopy and Fourier transform infrared spectrometry prove that the rough structures are generated from the hydrolysis condensation reaction between tetraethyl orthosilicate and 3-mercaptopropyltriethoxysilane. As a result, the synthetic chemical composition provided by the natural fabric and silica nanoparticles synergistically construct a superhydrophobic surface with water contact angles and shedding angle of 158° and 9°, respectively. Additionally, the treated fabric exhibits excellent chemical resistance and self-cleaning ability. Remarkably, the fabric still retains superhydrophobic and excellent mechanical robustness after 30 cycles of various oil/water separation. In summary, the resultant fabrics with excellent chemical resistance, remarkable mechanical robustness, and versatile separation abilities have potential applications in various oil/water separations.  相似文献   
965.
Background: Toll-like receptor (TLR) agonists are key immunomodulatory factors that can markedly ameliorate or exacerbate hypoxic–ischemic brain injury. We recently demonstrated that central infusion of the TLR7 agonist Gardiquimod (GDQ) following asphyxia was highly neuroprotective after 3 days but not 7 days of recovery. We hypothesize that this apparent transient neuroprotection is associated with modulation of seizure-genic processes and hemodynamic control. Methods: Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion (20.9 ± 0.5 min) and were monitored continuously for 7 days. GDQ 3.34 mg or vehicle were infused intracerebroventricularly from 1 to 4 h after asphyxia. Results: GDQ infusion was associated with sustained moderate hypertension that resolved after 72 h recovery. Electrophysiologically, GDQ infusion was associated with reduced number and burden of postasphyxial seizures in the first 18 h of recovery (p < 0.05). Subsequently, GDQ was associated with induction of slow rhythmic epileptiform discharges (EDs) from 72 to 96 h of recovery (p < 0.05 vs asphyxia + vehicle). The total burden of EDs was associated with reduced numbers of neurons in the caudate nucleus (r2 = 0.61, p < 0.05) and CA1/2 hippocampal region (r2 = 0.66, p < 0.05). Conclusion: These data demonstrate that TLR7 activation by GDQ modulated blood pressure and suppressed seizures in the early phase of postasphyxial recovery, with subsequent prolonged induction of epileptiform activity. Speculatively, this may reflect delayed loss of early protection or contribute to differential neuronal survival in subcortical regions.  相似文献   
966.
High performance fibers with high strength and toughness have great potential in composites, but contradiction between tensile strength and elongation at break makes the preparation to become a current challenge. Herein, an asymmetric structure of more flexible diamine, 3,4′-diaminodiphenyl ether (3,4′-ODA), is introduced into heterocyclic aramid (PBIA) fibers to replace rigid symmetric p-phenylenediamine (PDA). By studying the properties of copolymer (mPEBA) fibers with different ratios of diamine, it is found that the mPEBA fiber reached the optimal mechanical properties with the 30% content of 3,4′-ODA. Compared with homopolymerized heterocyclic aramid fibers, the tensile strength and elongation at break of mPEBA fiber are improved by 26.2% and 38.7%, respectively. Results of X-ray diffraction show that the introduction of 3,4′-ODA structure can increase stretchability of mPEBA fibers, improving the orientation degree during hot-drawing. Molecular dynamics simulations confirm that 3,4′-ODA structure undergoes a conformation transformation to form a straightened chain during hot-drawing, while symmetrical 4,4′-diaminodiphenyl ether (4,4′-ODA) cannot form the same conformation. The misplaced-nunchaku structure is formed based on the special meta-para position of 3,4′-ODA, achieving the synergy of high strength and high toughness.  相似文献   
967.
Wearable human–computer interaction equipment is a common technology, which can improve the comfort, convenience, and safety of the human body, and also can monitor human health. The flexible and wearable tensile sensor can be conveniently installed on clothes or directly connected to the body. This provides a convenient, timely, and portable solution for the detection of human motion. Therefore, wearable electronic equipment is gaining more attention. In this paper, a highly stretchable, flexible, and sensitive strain sensor which is based on multi-walled carbon nanotubes/Ecoflex nanocomposites is reported. A monofilament tensile sensor obtains good linearity (10.77%), low hysteresis (1.63%), good stability (6000 cycles under 100% strain), and ultra-high strain range (ε = 1300%). This ultra-stretchable sensor has potential applications in human motion monitoring, medical rehabilitation, health monitoring, human–computer interaction, and soft robots.  相似文献   
968.
A zirconium hybrid polyhedral oligomeric silsesquioxane derivative (Zr–POSS–bisDOPO) is synthesized by the corner-capping and Kabachnik–Fields reactions. It is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and then used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) to endow epoxy resin (EP) with flame retardancy. The flame retardancy, thermal stability, and mechanical properties of the cured EP/Zr–POSS–bisDOPO composites are investigated. The results show that when Zr–POSS–bisDOPO is added by 5–7 wt%, the EP/Zr–POSS–bisDOPO composites pass the UL-94 V-0 rating test. In addition, they have a better flame-retardant effect than pure EP. The combination of Zr atom embedded in the Si O cubic cage and the two phosphaphenanthrene substituent groups in one corner of cubic cage is expected to realize the Zr/Si/P ternary intramolecular hybrid synergistic effect and achieve the possibility of dispersing metal–POSS cages at a sub-micrometer-scale level into polymer matrix. It also proves that Zr–POSS–bisDOPO produces phosphorus-containing free radicals and terminates the chain reactions in gas phase. Meanwhile the Si O Si and Zr O units are retained in the solid phase, which promote the char formation and enhance the flame retardancy. This kind of Zr-doped POSS will be helpful for developing the new metal–POSS hybrid flame-retardant and polymer composites.  相似文献   
969.
The introduction of metallic fillers to polymers via the photopolymerization approach can endow the composite materials with some unique properties, but the relevant research is still scarce due to the issue of light penetration and inner filter effect. Herein, for the first time the fabrication of photocomposites based on fine iron powder (i.e., a typical kind of metallic filler) is reported in this work. The free radical polymerization of two different acrylate monomers, poly(ethylene glycol) diacrylate and trimethylolpropane triacrylate, is performed in the presence of iron filler under mild conditions (i.e., light emitting diode (LED)@405 nm irradiation at room temperature under air). And the real-time Fourier transform infrared spectroscopy reveals remarkable photopolymerization kinetics of acrylates with high final conversions and fast polymerization rates despite the increasing contents of iron filler in the composites. Interestingly, the 3D printing technique is applied to the iron filler-based composites to produce tridimensional patterns with excellent spatial resolution. This work not only paves the way for the investigation of photocomposites based on metallic fillers through photochemical methods, but also broadens the potential application prospects.  相似文献   
970.
Polymer systems have typical multiscale characteristics, both in space and time. The mesoscopic properties of polymers are difficult to describe through traditional experimental approaches. Dissipative particle dynamics (DPD) is a simulation method used for solving mesoscale problems of complex fluids and soft matter. The mesoscopic properties of polymer systems, such as conformation, dynamics, and transport properties, have been studied extensively using DPD. This paper briefly summarizes the application of DPD to research involving microchannel flow, electrospinning, free-radical polymerization, polymer self-assembly processes, polymer electrolyte fuel cells, and biomedical materials. The main features and possible development avenues of DPD are described as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号