首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   41篇
电工技术   125篇
综合类   2篇
化学工业   367篇
金属工艺   31篇
机械仪表   48篇
建筑科学   23篇
能源动力   85篇
轻工业   91篇
水利工程   2篇
无线电   72篇
一般工业技术   265篇
冶金工业   15篇
原子能技术   41篇
自动化技术   106篇
  2023年   7篇
  2022年   15篇
  2021年   25篇
  2020年   12篇
  2019年   12篇
  2018年   19篇
  2017年   14篇
  2016年   43篇
  2015年   19篇
  2014年   31篇
  2013年   89篇
  2012年   76篇
  2011年   72篇
  2010年   74篇
  2009年   65篇
  2008年   64篇
  2007年   63篇
  2006年   61篇
  2005年   51篇
  2004年   40篇
  2003年   39篇
  2002年   38篇
  2001年   23篇
  2000年   19篇
  1999年   20篇
  1998年   19篇
  1997年   21篇
  1996年   20篇
  1995年   19篇
  1994年   14篇
  1993年   12篇
  1992年   10篇
  1991年   12篇
  1990年   16篇
  1989年   15篇
  1988年   5篇
  1987年   15篇
  1986年   10篇
  1985年   9篇
  1984年   13篇
  1983年   14篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   10篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1971年   2篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
61.
采用分子动力学方法简化的碳纳米管等效纤维模型,利用具有精确周期性边界条件的均质化理论和宏微观均质化法分析正弦波形非连续碳纳米管的有效刚度和局部应力分布规律.结果表明,纳米增强复合材料的有效刚度和局部应力对碳纳米管的波形非常敏感,碳纳米管稍有弯曲就会导致复合材料有效刚度降低和应力传递能力的下降,为揭示复合材料中碳纳米管的增强机制和改善增强效果提供理论依据.  相似文献   
62.
Recent improvements in injection molding numerical simulation software have led to the possibility of computing fiber orientation in fiber reinforced materials during and at the end of the injection molding process. However, mechanical, thermal, and electrical properties of fiber reinforced materials are still largely measured experimentally. While theoretical models that consider fiber orientation for the prediction of those properties exist, estimating them numerically has not yet been practical. In the present study, two different models are used to estimate the thermal conductivity of fiber reinforced thermoplastics (FRT) using fiber orientation obtained by injection molding numerical simulation software. Experimental data were obtained by measuring fiber orientation in injection molded samples' micrographs by image processing methods. The results were then compared with the numerically obtained prediction and good agreement between numerical and experimental fiber orientation was found. Thermal conductivity for the same samples was computed by applying two different FRT thermal conductivity models using numerically obtained fiber orientation. In the case of thermal conductivity, predicted results were consistent with experimental data measurements, showing the validity of the models. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39811.  相似文献   
63.
64.
Laser pressure welding was conducted by changing the laser power and the roller pressure in the previous experiment. It was revealed that dissimilar metal welding of galvannealed steel and pure aluminium was feasible in a wide range of welding conditions. When the roller pressure was more than 1.96 kN at the laser powers equal to or less than 1400 W, the joint strengths were so high that the specimens in the tensile shear and the peel tests fractured in the A1050 parent metal.

In order to know the reason for such high strengths of joints with thick compound layers and the joining mechanism, the compound layer was observed by HR-transmission electron microscopy (TEM). The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13 and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is guessed that the joining areas were heated at a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high-strength joints with a relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   
65.
In this article, a genetic algorithm is applied to an optimization problem of material composition for a plate of step-formed functionally graded materials. The step-formed functionally graded plate is analyzed as a laminated composite plate made of numerous layers with homogeneous and different isotropic material properties. First, the onedimensional transient temperature distribution for a laminated plate is analyzed theoret ically. In addition, the thermal stress components for such an infinitely long plate are formulated under the mechanical condition of being traction-free. As a numerical example, a plate composed of zirconium oxide and titanium alloy is considered. In addition, for the optimization problem of minimizing the thermal stress distribution, the numerical calculations are made using a genetic algorithm without supposing a distribution function of material composition and the optimal material composition of each layer is determined taking into account the effect of the temperature dependency of material properties. Furthermore, the results obtained when a distribution function isn't specified and the results found when a distribution function is specified are compared.  相似文献   
66.
The phase field crystal (PFC) method is anticipated as a new multiscale method, because this method can reproduce physical phenomena depending on atomic structures in metallic materials on the diffusion time scale. Although the PFC method has been applied to some phenomena, there are few studies related to evaluations of mechanical behaviors of materials by appropriate PFC simulation. In a previous work using the PFC method, tensile deformation simulations have been performed under conditions where the volume increases during plastic deformation. In this study, we developed a new numerical technique for PFC deformation simulation that can maintain a constant volume during plastic deformation. To confirm that the PFC model with the proposed technique can reproduce appropriate elastic and plastic deformations, we performed a series of deformation simulations in one and two-dimensions. In one- and two-dimensional single-crystal simulations, linear elastic responses were confirmed in a wide strain rate range. In bicrystal simulations, we could observe typical plastic deformations due to the generation, annihilation and movement of dislocations, and the interaction between the grain boundary and dislocations. Moreover, the deformation behaviors of a nanopolycrystalline structure at high temperature were simulated and the intergranular deformations caused by grain rotation and grain boundary migration were reproduced.  相似文献   
67.
Time-resolved band edge luminescence spectrum in IIa diamond has been measured with the 5th harmonics of a pulsed YAG laser (5.82 eV) and an ICCD image intensifier of 5 ns gate width at 290 K. The time-resolved luminescence spectrum is decomposed into three components of free exciton (FE), excitonic complex (EC) and electron-hole plasma (EHP). The decay times of the FE and EC luminescence are 45 and 27 ns, respectively and that of the EHP luminescence has been seen to be shorter than the gate width, 5 ns. The low energy onset of the EHP luminescence spectrum has been observed to decrease with increasing excitation density and attains the onset of the electron-hole drop luminescence spectrum at the excitation density of 0.6 J/cm2, at which the electron-hole pair density is 1.2 × 1020 cm? 3. Furthermore, the excitation density dependences of the FE, EC and EHP luminescence intensities are explained with the percolation theory.  相似文献   
68.
69.
Dissimilar metal joints of galvannealed steel and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. In this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined. The compound layers in the weld interface were observed by optical microscope, and the layer thicknesses were measured. The thicknesses were in the range of 7–20 μm. The mechanical properties of welded joints were evaluated by the tensile shear test and the peel test. In the tensile shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to the laser beam of 1200–1400 W power under the roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. In order to know the reason for such high strength of joints with thick compound layers and the joining mechanism, the compound layer was observed by the HR-TEM. The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13, and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is assumed that the joining areas were heated in a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high strength joints with the relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   
70.
The equivalent circuit constants of permanent magnet synchronous motors are needed in the calculation of operation characteristics, construction of a control system, etc. These constants can be computed from the data on structural form and materials. However, measurements are necessary to obtain highly precise values. Methods for measurement of the d‐ and q‐axis inductances can be roughly divided into rotational and standstill methods. The standstill methods have the advantage that they are easy to carry out. However, it is difficult to consider magnetic saturation and distortion of the change in the armature winding inductance. The accuracy of the standstill method can be improved if these effects can be readily taken into account. This paper describes a standstill method for measuring accurate d‐ and q‐axis synchronous inductances of permanent magnet synchronous motors. By utilizing the fact that the EMF interference terms in the motor voltage equation considering the distortion of the inductance change are equal to zero when the rotor is in a specific position, the proposed method determines the inductances considering both magnetic saturation and inductance distortion effects from simple off‐line standstill testing. In addition, this method is capable of taking cross‐magnetic saturation into account when used with the necessary testing equipment. The proposed method was implemented on a 0.4‐kW interior permanent magnet synchronous motor with concentrated stator winding. The validity of the proposed method was demonstrated by comparing the measured and calculated results of the no‐load and on‐load characteristics. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 171(3): 41–50, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20969  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号