首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   16篇
  国内免费   2篇
电工技术   50篇
综合类   2篇
化学工业   172篇
金属工艺   12篇
机械仪表   27篇
建筑科学   12篇
能源动力   15篇
轻工业   35篇
水利工程   1篇
石油天然气   1篇
无线电   41篇
一般工业技术   77篇
冶金工业   10篇
原子能技术   18篇
自动化技术   44篇
  2023年   7篇
  2022年   7篇
  2021年   17篇
  2020年   5篇
  2019年   7篇
  2018年   14篇
  2017年   6篇
  2016年   9篇
  2015年   13篇
  2014年   19篇
  2013年   36篇
  2012年   21篇
  2011年   38篇
  2010年   21篇
  2009年   14篇
  2008年   25篇
  2007年   16篇
  2006年   13篇
  2005年   19篇
  2004年   16篇
  2003年   17篇
  2002年   16篇
  2001年   14篇
  2000年   9篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   6篇
  1989年   6篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
排序方式: 共有517条查询结果,搜索用时 12 毫秒
91.
Molecular dynamics simulations of multiwalled carbon nanotubes under hydrostatic pressure are performed to elucidate the novel class of radial buckling in the systems. It is revealed by all-atom simulations that the initial circular cross section transforms into a flower-like wavy configuration at critical pressure on the order of hundreds mega pascals or less. This kind of radial buckling, called radial corrugation, originates from the competition of the three relevant energies in the system: in-plane strain energy, van der Waals interaction energy between adjacent tubes, and out-of-plane bending energy. Their possible consequences for physical properties of carbon nanotubes are also discussed.  相似文献   
92.
This work reports the template‐free fabrication of mesoporous Al2O3 nanospheres with greatly enhanced textural characteristics through a newly developed post‐synthesis “water‐ethanol” treatment of aluminium glycerate nanospheres followed by high temperature calcination. The proposed “water‐ethanol” treatment is highly advantageous as the resulting mesoporous Al2O3 nanospheres exhibit 2–4 times higher surface area (up to 251 m2 g?1), narrower pore size distribution, and significantly lower crystallization temperature than those obtained without any post‐synthesis treatment. To demonstrate the generality of the proposed strategy, a nearly identical post‐synthesis “water treatment” method is successfully used to prepare mesoporous monometallic (e.g., manganese oxide (MnO2)) and bimetallic oxide (e.g., CuCo2O4 and MnCo2O4) nanospheres assembled of nanosheets or nanoplates with highly enhanced textural characteristics from the corresponding monometallic and bimetallic glycerate nanospheres, respectively. When evaluated as molybdenum (Mo) adsorbents for potential use in molybdenum‐99/technetium‐99m (99Mo/99mTc) generators, the treated mesoporous Al2O3 nanospheres display higher molybdenum adsorption performance than non‐treated Al2O3 nanospheres and commercial Al2O3, thereby suggesting the effectiveness of the proposed strategy for improving the functional performance of oxide materials. It is expected that the proposed method can be utilized to prepare other mesoporous metal oxides with enhanced textural characteristics and functional performance.  相似文献   
93.
The electric field–temperature phase diagrams of three bismuth sodium titanate-based relaxor ferroelectrics are reported, namely 0.94(Na1/2Bi1/2TiO3)–0.06(BaTiO3), 0.80(Na1/2Bi1/2TiO3)–0.20(K1/2Bi1/2TiO3) and 0.75(Na1/2Bi1/2TiO3)–0.25(SrTiO3). Relaxor behavior is demonstrated by temperature-dependent dielectric permittivity measurements in the unpoled and poled states, as well as by the field-induced phase transition into a ferroelectric phase from the relaxor phase. From temperature-dependent thermometry measurements, we identified the threshold electric field to induce the ferroelectric phase and obtained the released latent heat of the phase transition. We determined the nonergodic and ergodic relaxor phase temperature range based on the absence or presence of reversibility of the relaxor to ferroelectric transition. For all three compositions, the electric field–temperature phase diagram was constructed and a critical point was identified. The constructed electric field–temperature phase diagrams are useful to find optimum operational ranges of ferroelectrics and relaxors for electromechanical and electrocaloric applications.  相似文献   
94.
Metal oxide/nitride nanocomposites have many existing and potential applications, e.g. in energy conversion or ammonia synthesis. Here, a hybrid oxide/nitride nanocomposite (anatase/TixW1−xN) was synthesized by an ammonia-free sol–gel route. Synchrotron x-ray diffraction, complemented with electron microscopy and thermogravimetric analysis, was used to study the structure, composition and mechanism of formation of the nanocomposite. The nanocomposite contained nanoparticles (<5 nm diameter) of two highly intermixed phases. This was found to arise from controlled nucleation and growth of a single oxide intermediate from the gel precursor, followed by phase separation and in situ selective carbothermal nitridation. Depending on the preparation conditions, the composition varied from anatase/TixW1−xN at low W content to an isostructural mixture of Ti-rich and W-rich TixW1−xN at high W content. In situ selective carbothermal nitridation offers a facile route to the synthesis of nitride-oxide nanocomposites. This conceptually new approach is a significant advance from previous methods, which generally require ammonolysis of a pre-synthesized oxide.  相似文献   
95.
Waste Ponkan mandarin (Citrus reticulata) peel was used as biosorbent to extract Ni(II), Co(II) and Cu(II) from aqueous solutions at room temperature. To achieve the best adsorption conditions the influence of pH and contact time were investigated. The isotherms of adsorption were fitted to the Langmuir equation. Based on the capacity of adsorption of the natural biosorbent to interact with the metallic ions, the following results were obtained 1.92, 1.37 and 1.31 mmol g(-1) for Ni(II), Co(II) and Cu(II), respectively, reflecting a maximum adsorption order of Ni(II)>Co(II)>Cu(II). The quick adsorption process reached the equilibrium before 5, 10 and 15 min for Ni(II), Co(II) and Cu(II), respectively, with maximum adsorptions at pH 4.8. In order to evaluate the Ponkan mandarin peel a biosorbent in dynamic system, a glass column was fulfilled with 1.00 g of this natural adsorbent, and it was fed with 5.00 x 10(-4)mol l(-1) of Ni(II) or Co(II) or Cu(II) at pH 4.8 and 3.5 ml min(-1). The lower breakpoints (BP(1)) were attained at concentrations of effluent of the column attained the maximum limit allowed of these elements in waters (>0.1 mg l(-1)) which were: 110, 100 and 130 bed volumes (V(effluent)/V(adsorbent)), for Ni(II), Co(II) and Cu(II), respectively. The higher breakpoints (BP(2)) were attained when the complete saturation of the natural adsorbent occurred, and the values obtained were: 740, 540 and 520 bed volumes for Ni(II), Co(II) and Cu(II), respectively.  相似文献   
96.
Anodic oxide films with nanocrystalline tetragonal ZrO(2) precipitated in an amorphous oxide matrix were formed on Zr-Si and Zr-Al alloys and had significantly enhanced capacitance in comparison with those formed on zirconium metal. The capacitance enhancement was associated with the formation of a high-temperature stable tetragonal ZrO(2) phase with high relative permittivity as well as increased ionic resistivity, which reduces the thickness of anodic oxide films at a certain formation voltage. However, there is a general empirical trend that single-phase materials with higher permittivity have lower ionic resistivity. This study presents a novel material design based on a nanocrystalline-amorphous composite anodic oxide film for capacitor applications.  相似文献   
97.
Asabranchofsuperamolecularchem istry ,lanthanidecalixarenechemistryhasat tractedconsiderableresearchinterestforsever alyears[1~ 5 ] .Inthisrespect,Harrowfieldetal.[6~ 13] synthesizedalotoflanthanidecal ixarenecomplexes ,andrevealedtheircrystalstructures .Amongstt…  相似文献   
98.
Diatomite is widely deposited in Oita prefecture of Japan. It has high natural water content but its consolidation yield stress is much higher than the overburden pressure. Oedometer and triaxial consolidated undrained shear tests were performed in this study to investigate its macrobehavior in terms of compressibility and strength. The test results indicate that the compressibility and undrained shear strength of diatomite in the preyield state (i.e., the consolidation stress lower than the yield stress) are independent of the consolidation stress level. When the consolidation stress is higher than the yield stress, however, like virtually all soils, the compressibility of the diatomite increases dramatically. Similarly, the undrained shear strength of the diatomite depends on the confining stress when the confining stress is higher than the transitional stress. Both mercury intrusion porosimetry analysis and scanning electron microscopy were performed to investigate the change of the microstructure of the natural diatomite with the consolidation stress. The test results indicate that the microstructure of the diatomite remains unchanged in the preyield state, but it changes significantly in the vicinity of the yield stress. This unchanged microstructure is attributed to the unchanged macrobehavior within the preyield state. The breakage of diatoms particles and the compression of interparticle pores between the diatom particles in the postyield state contribute to the high compressibility of the diatomite.  相似文献   
99.
The solid solubility limit, grain orientation, defect structure and electrical conductivity of solidified rhombohedral specimens in the Bi2O3-BaO system are described. The c-axes (in hexagonal notation) of solidified specimens were almost entirely oriented along the platelet/film thickness. Slow-cooling (∼ 10−2° Csec−1) of the system gave solid solutions with substitutional type of 2BaO → 2BaBi′ + 20+ V 0 .. for 12 to 32 mol % BaO. High-temperature modification of slowly-cooled sample (16 mol % BaO) showed a conductivity of 8.8×10−1 Ω−1 cm −1 at 600° C along the conduction plane (perpendicular to the c-axis). Rapid quenching (∼ 105° C sec−1) produced solid solutions for 8 to 20 mol % BaO introducing interstitial Ba2+ (10–12 mol % BaO) and Schottky type defects such as VBi‴ and V Bi and V 0 .. (16 to 20 mol % BaO), however the high-temperature modification of the rhombohedral structure could not be frozen.  相似文献   
100.
We have developed a microfabricated fluorescence-activated cell sorter system using a thermoreversible gelation polymer (TGP) as a switching valve. The glass sorter chip has Y-shaped microchannels with one inlet and two outlets. A biological specimen containing fluorescently labeled cells is mixed with a solution containing a thermoreversible sol-gel polymer. The mixed solution is then introduced into the sorter chip through the inlet. The sol-gel transformation was locally induced by site-directed infrared laser irradiation to plug one of the outlets. The fluorescently labeled target cells were detected with sensitive fluorescence microscopy. In the absence of a fluorescence signal, the collection channel is plugged through laser irradiation of the TGP and the specimens are directed to the waste channel. Upon detection of a fluorescence signal from the target cells, the laser beam is then used to plug the waste channel, allowing the fluorescent cells to be channeled into the collection reservoir. The response time of the sol-gel transformation was 3 ms, and a flow switching time of 120 ms was achieved. Using this system, we have demonstrated the sorting of fluorescent microspheres and Escherichia coli cells expressing fluorescent proteins. These cells were found to be viable after extraction from the sorting system, indicating no damage to the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号