首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61799篇
  免费   5818篇
  国内免费   3179篇
电工技术   4357篇
技术理论   5篇
综合类   4377篇
化学工业   9617篇
金属工艺   3638篇
机械仪表   3654篇
建筑科学   5363篇
矿业工程   1599篇
能源动力   1829篇
轻工业   4097篇
水利工程   1153篇
石油天然气   3301篇
武器工业   516篇
无线电   7560篇
一般工业技术   7595篇
冶金工业   2625篇
原子能技术   788篇
自动化技术   8722篇
  2024年   334篇
  2023年   1153篇
  2022年   1877篇
  2021年   2723篇
  2020年   1935篇
  2019年   1594篇
  2018年   1802篇
  2017年   2024篇
  2016年   1803篇
  2015年   2448篇
  2014年   2939篇
  2013年   3630篇
  2012年   3912篇
  2011年   4168篇
  2010年   3776篇
  2009年   3485篇
  2008年   3600篇
  2007年   3426篇
  2006年   3458篇
  2005年   2931篇
  2004年   2057篇
  2003年   1875篇
  2002年   1962篇
  2001年   1754篇
  2000年   1508篇
  1999年   1638篇
  1998年   1187篇
  1997年   1053篇
  1996年   1026篇
  1995年   830篇
  1994年   678篇
  1993年   498篇
  1992年   443篇
  1991年   326篇
  1990年   224篇
  1989年   186篇
  1988年   160篇
  1987年   103篇
  1986年   65篇
  1985年   56篇
  1984年   35篇
  1983年   23篇
  1982年   32篇
  1981年   18篇
  1980年   20篇
  1979年   8篇
  1978年   2篇
  1959年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
为了探讨熔融成型桌面打印机成型的基础几何尺寸精度,并为熔融成型桌面打印机的市场定位提供设计参考依据,设计了线纹、步距、间隙、孔径、台阶等典型几何特征的三维模型,并采用选用PLA材料对这些基础几何特征进行熔融沉积成型。实验分别在自组装FDM 3D打印机、厦门螺壳电子科技有限公司、浙江闪铸三维科技有限公司的标准打印机上实施。最后基于对FDM成型的标准版基础几何特征尺寸精度能力的测试,初步提出一些适用于FDM打印品的质量评价方法以及标准测试样板的设计规则,对3D打印机的市场定位以及建立相关标准提供第三方检验测试手段。  相似文献   
992.
吴楠  魏衍广  崔雪飞  陶海明  罗峥 《材料导报》2017,31(Z1):524-527, 545
通过扫描电镜(SEM)和X射线衍射分析(XRD)等手段对新型Ti5563合金热轧态管材经固溶时效和时效处理后的组织及物相含量进行了分析,比较了不同热处理后合金的力学性能,研究了时效温度对材料组织和力学性能的影响。结果表明:直接时效处理是提高Ti5563合金热轧态管材综合性能较为有效的方法;在520~660℃时效处理时,温度越低,α析出相越多,尺寸越小,分布越弥散,合金强度越大;随着温度增加,α析出相减少且尺寸变大,强化作用减弱,合金的塑性增加。  相似文献   
993.
何钦生  邹兴政  李方  李征  唐锐  赵安中 《材料导报》2017,31(22):100-106
文章通过冷拉拔加工制备减面率为0%、30%、60%的Inconel X-750丝材,分别在650℃、730℃、810℃下时效处理16h,研究冷拉减面率对X-750合金组织性能的影响,特别是减面率对γ′相形状、分布、数量及尺寸的影响。经定量分析,增大冷拉减面率除了有细化晶粒的作用外,还能一定程度地增加γ′相析出的颗粒数量及体积分数,减小γ′相尺寸,进一步加强沉淀强化的作用。时效温度对X-750丝材的晶粒尺寸没有明显影响,对γ′相的数量、尺寸及形状影响较大。采用730℃时效处理16h的标准工艺制备的X-750丝材,经加工为弹簧后制造成金属C形密封环,其回弹量及泄漏率均满足要求,实验条件下密封性能良好。  相似文献   
994.
Sustainable hydrogen production via photocatalytic, electrocatalytic, and synergetic photoelectrocatalytic processes has been regarded as an effective strategy to address both energy and environmental crises. Due to their unique structures and properties, emerging ultrathin two-dimensional (2D) materials can bring about promising opportunities to realize high-efficiency hydrogen evolution. This review presents a critical appraisal of advantages and advancements for ultrathin 2D materials in catalytic hydrogen evolution, with an emphasis on structure–activity relationship. Furthermore, strategies for tailoring the microstructure, electronic structure, and local atomic arrangement, so as to further boost the hydrogen evolution activity, are discussed. Finally, we also present the existing challenges and future research directions regarding this promising field.  相似文献   
995.
Polyethylene glycols (PEGs) have been extensively studied as phase change materials (PCMs). To overcome the problem of liquid leakage, the authors firstly report a novel form‐stable phase change material (FSPCM) using coordination compound. The structure, morphology, thermal property, and thermal stability of the self‐prepared samples are determined. The obtained results confirm the existence of coordination bonds between PEG and Ca2+ species, and no liquid leakage is observed for the synthesized PEG–CaCl2 composites at temperatures as high as 120 °C. The PEG8000–CaCl2 (1:2) FSPCM exhibits a relatively large latent heat of 147.7 J g?1, corresponding to 87.8% of that of pure PEG. From the dynamical viewpoint, the activation energy of crystallization process is increased by only 5.2% for the PEG8000–CaCl2 composite due to the formation of coordination bonds; however, the activation energy is reduced by 18.3% during melting process. After adding 3 wt% conductive carbon black, the heat storage performance of the PEG phase change material can be optimized. The PEG‐CaCl2 composite would be a promising material for thermal energy storage applications and can be used in various engineering fields.
  相似文献   
996.
997.
Advanced biocompatible and robust platforms equipped with diverse properties are highly required in biomedical imaging applications for the early detection of atherosclerotic vascular disease and cancers. Designing nanohybrids composed of noble metals and fluorescent materials is a new way to perform multimodal imaging to overcome the limitations of single-modality counterparts. Herein, we propose the novel design of a multimodal contrast agent; namely, an enhanced nanohybrid comprising gold nanorods (GNRs) and carbon dots (CDs) with silica (SiO2) as a bridge. The nanohybrid (GNR@SiO2@CD) construction is based on covalent bonding between SiO2 and the silane-functionalized CDs, which links the GNRs with the CDs to form typical core–shell units. The novel structure not only retains and even highly improves the optical properties of the GNRs and CDs, but also possesses superior imaging performance in both diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM) measurements compared with bare GNRs or fluorescence dyes and CDs. The superior bioimaging properties of the GNR@SiO2@CD nanohybrids were successfully exploited for in vitro DR and FLIM measurements of macrophages within tissue-like phantoms, paving the way toward a theranostic contrast agent for atherosclerosis and cancer.
  相似文献   
998.
Two-dimensional (2D) materials have attracted enormous attention due to their functional applications in energy storage. In this work, a low-temperature molten-salt chemical exfoliation methodology is developed for producing free-standing 2D mesoporous Si through deintercalation of CaSi2 in excess molten AlCl3 at 195 °C. The average dimension of these sheets is 1.5 μm, and the thickness of a single sheet is approximately 10 nm. The as-prepared 2D Si has a Brunauer–Emmett–Teller surface area of 154 m2·g?1 and an average pore size of 5.87 nm. With this unique structure, the 2D Si exhibits superior Li-storage performance, including a reversible capacity of 2,974 mA·h·g?1 at 0.2 C, reversible capacities of 2,162, 1,947, and 1,527 mA·h·g?1 at 0.8, 2, and 5 C after 200 cycles, and a capacity retention of 357 mA·h·g?1 even at 30 C (90 A·g?1).
  相似文献   
999.
Metal oxide/graphene nanocomposites are emerging as promising materials for developing room-temperature gas sensors. However, the unsatisfactory performances owing to the relatively low sensitivity, slow response, and recovery kinetics limit their applications. Herein, a highly sensitive and rapidly responding room-temperature NO2 gas sensor based on WO3 nanorods/sulfonated reduced graphene oxide (S-rGO) was prepared via a simple and cost-effective hydrothermal method. The optimal sensor response of the WO3/S-rGO sensor toward 20 ppm NO2 is 149% in 6 s, which is 4.7 times higher and 100 times faster than that of the corresponding WO3/rGO sensors. In addition, the sensor exhibits excellent reproducibility, selectivity, and extremely fast recovery kinetics. The mechanism of the WO3/S-rGO nanocomposite gas sensor is investigated in detail. In addition to the high transport capability of S-rGO as well as its excellent NO2 adsorption ability, the superior sensing performance of the S-rGO/WO3 sensor can be attributed to the favorable charge transfer occurring at the S-rGO/WO3 interfaces. We believe that the strategy of compositing a metal oxide with functionalized graphene provides a new insight for the future development of room-temperature gas sensors.
  相似文献   
1000.
Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号