排序方式: 共有44条查询结果,搜索用时 15 毫秒
41.
多尺度散布熵(multi-scale dispersion entropy,MDE 1D)是一种有效衡量一维振动信号复杂性特征的非线性动力学分析法,但其仅能反映振动信号时域中的复杂性特征,无法完整反映振动信号频域的非线性动力学信息。为此,在二维散布熵(two-dimensional dispersion entropy,DE_(2D))的基础上,提出二维时频散布熵(two-dimensional time-frequency dispersion entropy,TFDE_(2D))用于衡量时间序列的时频复杂性特征。同时,为更完整地反映时频分布在不同尺度下的复杂信息,受多尺度粗粒化启发,将传统粗粒化方法拓展到二维多尺度粗粒化,提出了二维多尺度时频散布熵(two-dimensional multi-scale time-frequency dispersion entropy,MTFDE_(2D)),用来量度振动信号时频分布的多尺度复杂性特征。在此基础上,将其应用于滚动轴承故障诊断中的非线性特征提取,提出一种基于MTFDE_(2D)和萤火虫优化支持向量机的滚动轴承智能诊断方法。最后,将所提方法应用于滚动轴承试验数据分析,并与现有方法进行对比。结果表明,所提方法不仅能有效地提取故障特征,实现不同轴承故障类型和故障程度的有效诊断,且诊断效果优于对比法。 相似文献
42.
43.
变分模态提取(variational mode extraction,VME)作为一种以极低计算度提取特定信号模态的新方法,其通过设置期望模态中心频率来获得固有模态函数。但是,VME只能针对一个中心频率提取一个分量,无法实现多分量信号的自适应分解。对此,通过依据信号数据长度与带宽自适应设置多分量模态中心频率参数,把信号分解问题转化为多模态优化问题,在此基础上,提出了一种自适应变分模态提取(adaptive variational mode extraction,AVME)方法。此外,为解决单一指标无法衡量最优解调分量全面信息特征的问题,提出将峭度、相关系数和正交性进行融合来凸显及筛选有用分量进行解调和诊断。通过对滚动轴承故障仿真信号和实测信号进行分析,将所提的方法与现有多种信号分解方法对比,结果表明了该方法在计算耗时上和降噪方面的有效性。 相似文献
44.
根据某2250精轧机的牌坊结构设计方案,首先利用有限元软件建立了该牌坊的模型。通过对其结构的分析计算,得出了该牌坊承受最大轧制力时的最大应力所在位置和应力分布规律;然后根据分析结果,对牌坊结构设计方案进行了优化设计,并对优化后的牌坊强度和刚度进行校核,验证了优化结果能够满足使用要求。该结论可为机架的进一步改进设计提供了理论依据。 相似文献