排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
现有的高斯-脉冲混合噪声降噪算法多基于正则化技术采用迭代求解最优目标函数值的方式实现,执行效率普遍比较低,严重限制了其实际应用范围.为此,以卷积神经网络(convolutional neural network, CNN)为核心技术提出了一种基于图像质量感知的快速盲降噪算法(image quality-aware fast blind denoising algorithm, IQA-FBDA).在训练阶段,首先基于浅层CNN卷积神经网络设计图像质量评估模型来预测待降噪图像的图像质量值;然后,依据在大量噪声图像训练集合上获得的图像质量值统计分布规律构建混合噪声模式分类字典;最后,基于该分类字典将噪声图像集合划分为16个子集并训练与各个子集相匹配的深层CNN卷积神经网络专用降噪模型.在降噪阶段,首先利用图像质量评估模型估计给定待降噪图像的质量值,然后依据所预测的图像质量值查找噪声模式分类字典并调用与之相匹配预先训练好的深层CNN降噪模型即可快速地完成盲降噪任务.实验数据表明:IQA-FBDA算法在降噪效果方面的性能达到了与主流高斯-脉冲混合噪声降噪算法相当的水平,而在执行效率方面则有极大提高,更具实用价值. 相似文献
12.
磁悬浮式微动工作台由于运动平台和驱动机构采用非接触式的磁悬浮驱动技术而易于实现大范围高精度的微运动.本文论述了磁悬浮式微动工作台驱动电路的主要性能参数、驱动方案的选择,设计了两种驱动电路,并进行了实验研究,最后根据试验结果对两种驱动电路进行分析比较,得出了满足该磁悬浮式微动工作台运动要求的驱动方法,为磁悬浮式微动工作台的整体设计及其控制提供了技术支持. 相似文献
13.
介绍了CAN总线的技术特点、CAN总线控制器SJA1000和82C250的硬件结构和功能,SJA1000和82C250在智能传感器中的硬件电路和软件设计. 相似文献
14.
为提高现有随机脉冲噪声(RVIN)检测算法的检测准确率和执行效率,该文试图从构建描述能力更强的特征矢量和训练非线性映射更为准确的预测模型两个方面入手,实现一种基于训练策略的快速RVIN检测算法。一方面,提取多个不同阶的对数绝对差值排序统计值并结合一个能够反映图像边缘特性的统计值作为刻画图块中心像素点是否为噪声的特征矢量。在计算量增加极少的情况下,显著提升了特征矢量的描述能力。另一方面,基于深度置信网络(DBN)训练RVIN预测模型(RVIN检测器)将特征矢量映射为噪声类型标签,实现了比浅层预测模型更为准确的映射。大量实验数据表明:与现有的RVIN检测算法相比,所提算法在检测准确率和执行效率两个方面都更有优势。
相似文献15.
为将低照度图像及基于它生成的多个不同曝光度图像中的互补性信息进行最佳融合以获得更为鲁棒的视觉增强效果,提出了一种基于多图像局部结构化融合的两阶段低照度图像增强(Low-light image enhancement,LLIE)算法.在待融合图像制备阶段,提出了一种基于图像质量评价的最佳曝光度预测模型,利用该预测模型给出的关于低照度图像最佳曝光度值,在伪曝光模型下生成适度增强图像和过曝光图像(利用比最佳曝光度值更高的曝光度生成)各一幅.同时,利用经典Retinex模型生成一幅适度增强图像作为补充图像参与融合.在融合阶段,首先将低照度图像、适度增强图像(2幅)和过曝光图像在同一空间位置处的图块矢量化后分解为对比度、结构强度和亮度三个分量.之后,以所有待融合对比度分量中的最高值作为融合后的对比度分量值,而结构强度和亮度分量则分别以相位一致性映射图和视觉显著度映射图作为加权系数完成加权融合.然后,将分别融合后的对比度、纹理结构和亮度三个分量重构为图块,并重新置回融合后图像中的相应位置.最后,在噪声水平评估算法导引下自适应调用降噪算法完成后处理.实验结果表明:所提出的低照度图像增强算法在主客观图像质量评价上优于现有大多数主流算法. 相似文献
16.
18.
基于CAN总线的智能传感器网络 总被引:1,自引:0,他引:1
介绍了CAN总线的技术特点、CAN总线控制器SJA1000和82C250的硬件结构和功能,SJA1000和82C250在智能传感器中的硬件电路和软件设计。 相似文献