排序方式: 共有50条查询结果,搜索用时 15 毫秒
21.
在数据挖掘和机器学习的基于距离的各种技术中,例如基于距离的聚类和基于距离的分类,如何度量数据间的相似性已经成为一项基础任务.对于某一具体问题,采用合适的相似性度量,会使问题得到更有效的解决.越来越多的研究表明,通过对成对约束(正约束和负约束)的充分利用,从而得到与问题相匹配的相似性度量,能够大幅度地提升算法性能.目前基于约束的相似性度量研究主要是基于约束的距离度量学习,通过对约束信息的利用,学习一个距离度量矩阵,然后再进行分类或者聚类.通过对成对约束尤其是负约束的挖掘,提出一种基于成对约束的相似性度量准则,然后将此准则应用于聚类和分类任务中,分别提出聚类和分类算法,最后在大量标准数据集上将这些算法的性能与目前流行的算法进行实验比较,并据此得出了一些经验性的启示. 相似文献
22.
局部判别型典型相关分析算法 总被引:1,自引:0,他引:1
在典型相关分析(CCA)的基础上,通过引入样本的类信息,并结合局部化思想,充分考虑了同类样本之间的局部相关与不同类样本之间的局部相关关系及其对分类的影响,提出了一种新的有监督学习方法——局部判别型CCA(Locality Discriminative CCA,简记为LDCCA)。LDCCA提取的特征能够实现同类样本之间相关最大化,同时使得不同类样本之间相关最小化,这将有利于模式的分类。在人工数据集,手写体数字数据集上和ORL,Yale和AR人脸数据集的实验结果表明,LDCCA能有效地利用类信息来提高分类性能。 相似文献
23.
脑网络分类在脑科学研究和脑疾病诊断等领域引起了学者们的广泛关注。目前大多数有关脑网络分类的研究都是以单个脑区或成对脑区之间的相关性作为分类特征,其缺点是不能反映多个脑区之间的拓扑结构信息。为克服上述缺点,提出了一种基于子图选择和图核降维的脑网络分类方法。具体包括:(1)分别从正类训练样本组及负类训练样本组中提取多个频繁子图,进而利用基于频度差的子图选择算法选取最具判别性的子图集;(2)基于上述过程中得到的子图集,利用图核主成分分析(graph-kernel-based principal component analysis,GK-PCA)方法对经过子图选择后的图数据进行特征提取;(3)利用支持向量机(support vector machine, SVM)在特征提取后的数据上进行分类。在真实的轻度认知障碍(mild cognitive impairment,MCI)脑网络数据集上对该方法进行了验证,实验结果表明了该方法的有效性。 相似文献
24.
用核方法来改造传统的学习算法是近年来机器学习领域研究的一个热点.本文提出了一种新的应用核方法在原输入空间中进行聚类的思想,并把其推广应用于传统的聚类算法,得到模糊核C-均值算法和可能性核C-均值算法.该类算法的实质是在准则函数中采用了一类核诱导的非欧氏距离的新的距离度量,并且依据Huber的鲁棒统计分析,该类算法是内在鲁棒的,适合对不完整数据或缺失数据.含噪数据和野值的聚类.最后在人工和Benchmark数据集上对上述算法的性能进行了验证. 相似文献
25.
运用机器学习中新颖的核方法和社会网络中广泛存在的小世界现象,对Hattori等人提出的多模块多对多联想记忆模型(multi-module associative memory for many-to-many associations,简称(MMA)2)进行了改进,构建出了一个基于小世界体系的多对多核联想记忆模型框架(small world structure inspired many to many kernel associative memory models,简称SWSI-M2KAMs).该框架不仅克服了原模型不能联机提交训练样本且迭代次数过多的缺陷,而且拓展了原模型的智能信息处理范围.更重要的是,通过核函数的选取,该模型框架可以衍生出更多新的多对多联想记忆模型,而且,由于小世界结构的引入,在一定程度上简化了模型的结构复杂度.最后的计算机模拟,证实了新的模型具有良好的多对多联想记忆功能. 相似文献
26.
针对当前基于机器学习的早期阿尔茨海默病(AD)诊断中有标记训练样本不足的问题,提出一种基于多模态特征数据的权值分布稀疏特征学习方法,并将其应用于早期阿尔茨海默病的诊断.具体来说,该诊断方法主要包括两大模块:基于权值分布的Lasso特征选择模型(WDL)和大间隔分布分类机模型(LDM).首先,为了获取多模态特征之间的数据分布信息,对传统Lasso模型进行改进,引入权值分布正则化项,从而构建出基于权值分布的Lasso特征选择模型;然后,为了有效地利用多模态特征之间的数据分布信息,以保持多模态特征之间的互补性,直接采用大间隔分布学习算法训练分类器.选取国际阿尔茨海默症数据库(ADNI)中202个多模态特征的被试者样本进行实验,分类AD最高平均精度为97.5%,分类轻度认知功能障碍(MCI)最高平均精度为83.1%,分类轻度认知功能障碍转化为AD(pMCI)最高平均精度为84.8%.实验结果表明,所提WDL特征学习方法可从串联的多模态特征学到性能更优的特征子集,并能根据权值分布获取多模态特征之间的数据分布信息,从而提高早期阿尔茨海默病诊断的性能. 相似文献
27.
半监督降维方法的实验比较 总被引:5,自引:0,他引:5
半监督学习是近年来机器学习领域中的研究热点之一,已从最初的半监督分类和半监督聚类拓展到半监督回归和半监督降维等领域.目前,有关半监督分类、聚类和回归等方面的工作已经有了很好的综述,如Zhu的半监督学习文献综述.降维一直是机器学习和模式识别等相关领域的重要研究课题,近年来出现了很多将半监督思想用于降维,即半监督降维方面的工作.有鉴于此,试图对目前已有的一些半监督降维方法进行综述,然后在大量的标准数据集上对这些方法的性能进行实验比较,并据此得出了一些经验性的启示. 相似文献
28.
将监督信息引入到聚类算法中去,在先前提出的鲁棒联机聚类算法(ROC)的基础上,通过引入以样本类标号形式给出的监督信息,提出了一种半监督的鲁棒联机聚类算法(Semi-ROC).在算法的聚类精度和鲁棒性能上,算法Semi-ROC比ROC和AddC有着更好的性能,在人工数据集和UCI标准数据集上的实验结果表明,Semi-ROC能有效地利用少量的监督信息来提高算法的聚类性能,得到较优的结果.另外,在添加噪声的情况下,算法Semi-ROC比原始的联机聚类算法AddC和ROC都更加鲁棒. 相似文献
29.
近年来,随着脑影像和基因技术的发展,脑影像遗传学得到了广泛的关注.在脑影像遗传研究中,检验遗传变异(即单核苷酸多态性(single nucleotide polymorphisms,SNPs))对大脑结构或功能的影响是一项艰巨的任务.此外,提取的多模态脑表型和来自同一区域的一致性脑影像标志物为理解疾病(例如,阿尔茨海默病(Alzheimer’s disease,AD))的机理提供了更多的见解.利用多模态脑表型作为桥接风险基因位点和疾病状态的中间特征,设计通过标签对齐的多模态学习方法来识别AD中风险基因位点与疾病状态之间的一致性表型.首先,用标准的多模态方法去探索和AD相关的基因位点(即APOEe4 rs429358)与多模态脑影像之间关系;其次,为了利用标记样本之间的标签信息,在标准多模态方法的目标函数中添加了一个新的标签对齐正则化项,使得所有具有相同类别标签的多模态样本在映射空间中更靠近;最后,在公开的ADNI (Alzheimer’s disease neuroimaging initiative)数据集上的3种脑影像(即大脑的结构组织信息、脱氧葡萄糖正电子发射断层扫描和正电子发射断层扫描淀粉样蛋白成像)进行实验.实验结果表明:该方法可以在多模态脑影像上发现鲁棒的、一致性脑区域来解释AD的病因,并在3个模态上将相关系数分别提高了8%,9%,5%. 相似文献
30.
融合来自多个中心的医学数据能够增加样本数量,有助于研究自闭症谱系障碍(Autism spectrum disorder, ASD)的病理变化。因此,如何有效地利用多中心数据,提高对ASD诊断的准确性受到了越来越多的关注。然而,以往的大部分研究忽略了多中心数据的异质性(如受试者群体和扫描参数的不同),这可能会降低模型在多中心数据上对疾病诊断的性能。为了解决这一问题,提出一种基于联合分布最优传输(Joint distribution optimal transport, JDOT)的领域自适应模型鉴别ASD。选择一个中心作为目标域,其余的中心作为源域,假设两个域的联合特征、标签空间分布之间存在非线性映射,利用最优传输方法交替优化传输矩阵和分类器。结果表明,在多中心静息态功能磁共振成像(resting state functional magnetic resonance imaging, rs-fMRI)数据上,该模型能够有效提高对ASD鉴别的准确性。 相似文献