排序方式: 共有45条查询结果,搜索用时 0 毫秒
31.
双氧水氧化天然石墨作锂离子蓄电池负极 总被引:1,自引:0,他引:1
用双氧水作氧化剂,对天然鳞片石墨进行了液相氧化改性。双氧水的氧化改性降低了天然石墨表面的含氧量,改善了其电化学性能。采用XPS和FTIR方法分析得知,氧化改性主要是去除了天然石墨表面的部分羧基(COOH)而增加了酯(COOR)的含量,正是这种表面官能团的转换导致了天然石墨表面的氧含量降低。热失重分析结果表明氧化改性对天然石墨的结构稳定性的提高作用不是很明显。天然石墨表面状态的变化有利于减少形成SEI膜时锂离子的消耗,抑制溶剂和电解质的分解,从而使首次循环的不可逆容量降低,氧化后的样品HONG的首次充放电效率从86.7%提高到89.8%,前40次的循环可逆放电容量基本没有衰减,都保持在320 mAh/g以上,这已经达到了实用化锂离子蓄电池负极材料的要求。 相似文献
32.
四川盆地中部须家河组致密砂岩储层流体包裹体研究 总被引:6,自引:3,他引:6
流体包裹体岩相学与显微测温分析结果表明,四川盆地中部上三叠统须家河组(T3x)致密砂岩储层存在早、晚2期流体包裹体。早期流体包裹体均一温度较低,主要为80~100℃;晚期流体包裹体均一温度较高,主要为120~140℃,成熟度较早期也较高。推断四川盆地中部致密砂岩储层的油气充注、运移经历了2个主要期次,早期发生于晚侏罗世,晚期发生于晚白垩世—古近纪初期,这与油气藏饱和压力得出的结果相符。 相似文献
33.
报道了以商品化硬炭作为钠离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其结构进行表征;利用恒电流充放电、循环伏安和阻抗谱技术对电化学性能进行了测试。结果表明:硬炭呈现无序乱层多孔结构,比表面积为2.2 m2/g,层间距远大于石墨负极材料(0.38 nm)。该硬炭材料对钠离子电池表现出较好的嵌入/脱嵌钠的容量、倍率性能和良好的循环性能。在20 m A/g电流密度下的首次嵌钠比容量为361.7 m Ah/g,脱钠比容量为259.8 m Ah/g,首次效率为72%;在40 m A/g电流密度下循环100次的比容量保持在250m Ah/g,容量保持率99%,是一种具有应用潜力的储钠负极材料。 相似文献
34.
以中间相碳微球(MCMBs)为前驱体,采用预炭化和KOH活化法制备不同结构特征的MCMB基微晶炭;采用X射线衍射技术和N2吸附法对其微晶结构与孔结构进行表征,并采用恒电流充放电的方法研究其电容特性。结果表明,碱炭比的提高有效地增加了MCMB基微晶炭的类石墨微晶层间距、比表面积与孔容,其放电比电容与耐电压特性也随之提升。其中,碱炭比为4∶1制备的微晶炭NMC4的电极在3.5 V工作时,展现出107.1 F/g的高比电容和48.1 Wh/kg的高比能量,并具有大于6.2 kW/kg的比功率和稳定的循环性能。NMC4是一款具备实用化潜力的新型炭电极材料。 相似文献
35.
在600~900 ℃对三聚氰胺树脂仅经炭化不经活化处理,制备了含氮量为4.93%~45.88%的三聚氰胺树脂基炭.采用低温N2吸附、元素分析和X射线光电子光谱法(XPS)分别测定了三聚氰胺树脂基炭的比表面积和孔结构、元素组成和表面元素组成,并采用循环伏安和恒流充放电考察其电容特性.结果表明:三聚氰胺树脂基炭具有较小的比表面积(最大102.6 m2/g),在30%KOH水溶液中具有较好的电容特性.800℃热处理的样品CMF 801在25mA/g时具有185.7 F/g的最大质量比容量,单位面积比容量达到180.9 μ F/cm2,是普通活性炭的10倍;1 000 mA/g电流密度下的放电比容量达到142.4 F/g,并表现出较好的功率性能和循环稳定性. 相似文献
36.
37.
硅基材料是新一代高容量锂离子蓄电池负极材料的典型代表,近年来已成为理论研究和应用研究的热点之一。综述了单质硅、硅-金属合金以及硅-碳复合材料作锂离子蓄电池负极材料最新研究成果,并对其今后研究和应用前景作了展望。纳米级硅薄膜具有大于3500mAh/g的超高可逆容量,有望用于微型锂离子蓄电池;硅-金属合金材料的研究正在由单相搀杂向多相搀杂的方向转移;而硅-碳复合材料能有效抑制硅的体积变化,在发挥高放电容量的同时能保持良好的循环特性,很有可能成为规模化生产的新一代负极材料。 相似文献
38.
无定形结构的硬炭以其不同于石墨有序结构的结构优势,以及低成本和原材料来源广,被认为是钠离子电池(SIBs)最有前途的碳基负极材料,其复杂的微观结构与钠储存有着密切的关系。在硬炭微观结构中缺陷,层间和纳米孔隙是硬炭储钠的三个关键特征结构,深入研究这些特征结构有利于实现高容量钠离子电池碳基负极的有效构造,并有利于推进钠离子电池产业化进程。最后对高性能钠离子电池负极的结构设计进行了展望。 相似文献
39.
为研究石墨烯在超级电容器中的导电效果,将石墨烯量子点(GQDs)代替商品化导电炭黑(CB)用作新型纳米尺寸(~10 nm)的导电剂,分别采用直接液相复合和热还原复合方式制备具有良好导电网络的AC-G和AC-HG系列电极,并考察两种复合方式对活性炭电极结构特性与双电层电容性能的影响.结果表明:添加1%GQDs的AC电极呈现出优异的比电容和倍率性能,当电流密度从0.1 A/g增加到10 A/g,其比电容由110 F/g降到85 F/g,明显优于添加10%CB的AC电极(100 F/g降为65 F/g);热处理过程大幅去除了GQDs所带含氧官能团,AC-HG电极的电子电导率提高而离子电导率降低,因此其倍率性能略有下降,但循环稳定性大幅提高. 相似文献
40.
以马铃薯淀粉为原料,通过空气中210℃稳定化、氮气中600℃炭化,制备了马铃薯淀粉基炭微球。其中,稳定化处理是制备过程中的关键步骤。利用热失重分析(TGA)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)和差热扫描量热法(DSC),对其稳定化机理进行了研究;并利用扫描电子显微镜(SEM)对其形貌进行了表征。结果表明:当稳定化时间足够长时(如12h),所制备的马铃薯淀粉基炭微球能够保持原淀粉的颗粒形态。这是由于在稳定化过程中,马铃薯淀粉中所含结晶水的失去导致了淀粉内微晶结构的破坏,使淀粉颗粒在进一步的炭化过程中不再发生微晶的熔融过程。 相似文献