排序方式: 共有43条查询结果,搜索用时 14 毫秒
21.
采用氯乙烯-丙烯酸丁酯共聚弹性体(VC-BA)和经表面处理的纳米碳酸钙(nano-CaCO_3)制备VC- BA/nano-CaCO_3复合母粒,再用该复合母粒与聚氯乙烯(PVC)共混,制备了VC-BA/nano-CaCO_3复合母粒增韧的PVC复合材料。复合母粒中m(VC-BA)/m(nano-CaCO_3)为2:3时,增韧效果最佳。nano-CaCO_3与VC-BA有协同增韧作用,且nano-CaCO_3能够补强。当PVC和复合母粒质量比为100:20时,材料的冲击强度达到49.5 kJ/m~2,是纯PVC的10倍,拉伸强度为51.0 MPa。 相似文献
22.
通过对纳米碳酸钙(n—CaCO3)表面改性及其对聚氯乙烯(PVC)、氯乙烯-丙烯酸乙酯共聚物(VC/EA)、n-CaCO3三元复合体系加工工艺的考察,研制了(VC/EA)/n—CaCO3复合母粒改性的PVC材料,并对其力学性能进行了研究。结果表明,利用将VC/EA共聚物与n—CaCO3先制成复合母粒,再与PVC进行共混的二次分散成型工艺,有利于n-CaCO3在基体中的分散;当复合母粒中VC/EA与n—CaCO3的比例为2:3时,材料的力学性能最佳,n-CaCO3对材料具有补强作用,并且n—CaCO3和VC/EA能协同增韧PVC,使材料的冲击强度得到大幅度提高,当PVC和复合母粒比例为100:20(质量比)时,材料的冲击强度达到41.5kJ/m^2,是纯PVC(PVC的冲击强度为4.914/m^2)的8.5倍,拉伸强度仍高达50.8MPa。 相似文献
23.
为了解决纳米TiO2的分散问题,在冷冻介质中以复合分散剂对纳米二氧化钛颗粒进行分散,并采用透射电子显微镜对其分散情况、粒径大小进行测试。结果表明:在冷冻介质中纳米二氧化钛在复合分散剂(m(聚丙烯酸钠)∶m(三聚磷酸钠)=1∶1)时纳米颗粒可以均匀分散,可以得到几纳米大小的分散体系。分散介质的温度是影响纳米颗粒分散的关键因素,并给出相应理论分析。其中,配合、且复合分散剂与二氧化钛的质量比为1.5∶1时分散效果最好。对纳米二氧化钛颗粒的分散而言,冷冻技术和分散剂配比起了关键作用 相似文献
24.
25.
反应挤出PU/纳米CaCO3增强增韧PVC 总被引:1,自引:1,他引:0
在考察聚氯乙烯/聚氨酯/纳米碳酸钙(PVC/PU/nano-CaCO3)反应挤出工艺的基础上,结合PU的反应特点,将表面处理的nano-CaCO3利用超声辐照技术并经搅拌分散于L-MDI中,采用反应挤出一步法制备了PU/nano-CaCO3共同增强增韧的PVC复合材料,并时其力学性能进行了研究.结果表明:PU/nano-CaCO3的质量配比为4:1时,增韧效果最佳,PU和nano-CaCO3能协同增韧PVC,且nano-CaCO3具有增强作用,当PVC/PU/nano-CaCO3质量比为100:20:5时,材料的综合性能最优.冲击强度达到58.3 kJ/m3,拉伸强度为51.5 MPa,增强增韧PVC效果显著. 相似文献
26.
27.
28.
改性石油树脂增容PVC/HDPE共混体系的研究 总被引:7,自引:1,他引:7
王士财 《石油化工高等学校学报》2004,17(4):30-33
为了提高聚氯乙烯 (PVC)和高密度聚乙烯 (HDPE)的相容性 ,研制性能优越的PVC/HDPE共混材料 ,采用自合成的改性石油树脂 (MPR)作为PVC和HDPE的增容剂 ,通过对PVC、HDPE及MPR容度参数的考察、PVC/MPR/HDPE共混物的动态力学分析 (DMA)以及共混材料冲击试验等 ,研究了共混物的相容性和流变特性 ,在此基础上研制了PVC/MPR/HDPE共混材料 ,进而研究了共混材料的力学性能。结果表明 ,MPR是PVC/HDPE的一种良好增容剂 ,MPR的增容作用使得PVC/HDPE有了一定程度的相容性 ,并使共混体系具有良好的流动性能 ,明显改善了共混物的加工性能 ;并在保持PVC材料拉伸强度、弯曲强度等具有较高保持率的前提下 ,显著提高材料抗冲性能 ,当PVC/MPR/HDPE共混物的质量配比为 10 0∶8∶6时 ,所制共混材料的冲击强度达到 5 0 .6kJ/m2 ,是纯PVC的 10倍多 (纯PVC冲击强度为 4 .9kJ/m2 ) ,同时共混材料拉伸强度、弯曲强度的保持率也在 90 %以上。合适配比的PVC/MPR/HDPE共混物具有良好的塑化效果和加工性能 ,共混材料具有优良的综合性能 相似文献
29.
30.