排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
提出了一种用于非均匀光照条件下人脸识别的光照补偿算法。该算法首先将人脸图像变换到对数域,并在对数域中计算2维小波变换,通过舍弃低频子带图像中的系数来实现人脸图像的非均匀光照补偿。由于人脸光照补偿的目的是为了提高人脸识别性能,所以光照补偿的效果利用人脸识别率来表征。在Yale B人脸库中,与对数域离散余弦变换(DCT)光照补偿算法进行了比较,实验结果表明,本文方法的人脸识别平均误识率可以达到0.18%,比对数域DCT方法具有更好的性能。另外,在CAS_PEAL人脸库中的实验结果表明,本文方法的性能与对数域DCT方法相近。 相似文献
22.
利用Gabor小波变换解决人脸识别中的小样本问题 总被引:2,自引:9,他引:2
提出了一种在人脸识别中解决小样本问题的新算法。通过把人脸图像经过Gabor小波变换后得到的每个图像都看成是独立的样本,大大增加了每一类人脸样本的样本数,解决了人脸识别中的小样本问题。专门针对人脸特征向量组,设计了使用白化变换后余弦距离测度的最近邻分类器来进行分类判决。在FERET人脸库中,对该方法与直接PCA方法进行了实验比较,结果表明,新方法的平均正确识别率可以达到97%,比直接PCA方法具有更好的识别性能。 相似文献
23.
提出了一种用于非均匀光照条件下人脸识别的光照补偿算法。该算法通过在对数域计算2维Armlets多小波变换来实现人脸光照补偿,然后直接在对数域进行人脸识别。在Yale B人脸库中与其他光照补偿算法进行了比较,实验结果表明,该方法的平均误识率仅为0.18%,优于现有的其他算法。 相似文献
24.
提出了一种用于非均匀光照条件下人脸识别的光照补偿算法。该算法在对数域计算2维多小波变换来实现人脸光照补偿,然后直接在对数域进行人脸识别。在Yale B人脸库中与其它光照补偿算法进行了比较,实验结果表明,该方法的平均误识率仅为0.70%,优于现有的绝大多数算法。 相似文献
25.
基于小波变换的人脸检测 总被引:2,自引:1,他引:2
提出了一种基于二维离散小波变换的人脸检测算法。该算法采用Haar小波计算小波脸,导出了提取人脸特征向量的相应公式,利用感知准则训练线性分类器进行分类判决。在4个不同的人脸数据集上与特征脸方法进行了比较。结果表明,该算法的计算效率和检测精度均优于特征脸方法。 相似文献