首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
综合类   2篇
金属工艺   27篇
矿业工程   4篇
一般工业技术   2篇
冶金工业   12篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
排序方式: 共有47条查询结果,搜索用时 328 毫秒
21.
使用反应磁控溅射技术在W18Cr4V高速钢基体表面制备W-C梯度过渡层(WCGC),采用热丝化学沉积法(HFCVD),以甲烷和氢气为反应气体,在基体表面生长金刚石膜。采用场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)和激光拉曼光谱(Raman)对W-C过渡层和金刚石膜进行检测分析,研究热丝辐射距离和沉积气压对WCGC与金刚石膜的的影响。结果表明:热丝辐射距离对金刚石薄膜和WCGC均有较大影响;WCGC过渡层能够在一定热丝辐射范围内降低Fe在金刚石膜沉积过程的负面影响,有效提高金刚石的形核率,在基体表面得到连续致密的金刚石膜。  相似文献   
22.
溅射气压对AlN薄膜纳米结构和纳米力学性能的影响   总被引:1,自引:0,他引:1  
研究在不同气压下,运用射频磁控溅射法在Si(100)上沉积氮化铝(AlN)薄膜,并使用XRD、SEM、AFM、XPS和纳米压痕等表征手段研究薄膜的性质。XRD结果表明,在低压下有利于沉积c轴取向的薄膜,而在高气压下有利于(100)面的生长。SEM和AFM结果表明,随着气压的升高,沉积速率和表面粗糙度均减小而表面粗糙度则增加。XPS结果表明,降低气压有利于减少薄膜中的氧含量,从而使制备的薄膜成分更接近其化学计量比。通过测试AlN薄膜的纳米力学性能表明,在0.30 Pa下制备的薄膜具有最大的硬度和弹性模量。  相似文献   
23.
用H2、CH4和B2H6气体作为气源,采用热丝化学气相沉积技术在单晶硅衬底上分别制备纯金刚石膜和含硼金刚石薄膜,然后在600~800℃高温氧化。通过扫描电镜、拉曼光谱及X射线衍射仪对金刚石膜层的形貌和成分进行表征,用常温接触角测试仪对其亲水性进行表征,研究高温氧化协同原位掺硼对金刚石薄膜亲水性的影响。结果表明,随高温氧化温度升高,膜层逐渐被刻蚀至出现微孔形貌,其中纯金刚石膜层在700℃下氧化后,接触角从68.1°降低至21.5°,膜层亲水性提高。随掺硼浓度提高,微孔逐渐消失,在V(H2):V(CH4):V(B2H6)=97:3:0.4条件下制备的掺硼金刚石膜,并在800℃氧化处理后,具有最小接触角14.1°。在原位掺硼和高温氧化的协同作用下,膜层成分发生改变,同时金刚石完美构型出现缺陷,微孔形貌使金刚石膜层的表面能增大,从而有效提高金刚石薄膜的亲水性。  相似文献   
24.
以H2和CH4为反应气体,B2H6为硼掺杂源,采用热丝化学气相沉积法(HFCVD)在金属Nb上制备不同硼原子浓度的硼掺杂金刚石薄膜(BDD)电极。采用场发射扫描电镜(FESEM)、拉曼光谱仪(Raman spectrometer)和电化学工作站对金刚石薄膜的形貌、质量和电化学性能进行分析,研究金刚石表面端基和电解液pH值对BDD电极电化学性能的影响。结果表明,硼烷:甲烷=1%~2%(体积分数)的氢终端BDD电极,在酸性电解液(1mol/L H2SO4)中具有最宽的电势窗口(3.8V),在酸性溶液中具有极低的背景电流(~10-5A)。  相似文献   
25.
目的保持硬质合金预处理后基体的强度和表面光洁度,并且提升沉积的金刚石薄膜的膜基结合力。方法使用真空管式炉设备对硬质合金进行真空热处理气态渗硼,然后使用热丝化学气相沉积系统(HFCVD)沉积金刚石薄膜。之后采用X射线衍射仪、扫描电子显微镜(SEM)、能谱分析仪(EDS)、拉曼光谱仪、表面轮廓仪和洛氏压痕测试仪等对样品的结构、形貌和膜基结合性能进行了分析。结果使用真空热处理气态渗硼法可以在较短时间内完成硬质合金的硼化处理,得到以Co WB相为主的渗硼层,并且具有高温稳定性,表面硬度较未硼化处理的样品提高了15%~20%,最高硬度达到2445HV。相较于酸碱刻蚀二步法预处理,渗硼处理更加有效地改善了膜基结合力,当渗硼温度在1000℃时,可以更加有效抑制基体中的Co颗粒向外扩散,制备的金刚石薄膜质量最优,薄膜和基体的结合性能也更加优异。结论采用真空管式炉进行的热处理气态渗硼预处理法可以简单高效地实现对硬质合金的硼化处理,重复性好,并且可大批量处理,处理后沉积的金刚石薄膜有良好的膜基结合力。  相似文献   
26.
目的 探究电极微观结构与降解温度对掺硼金刚石(BDD)薄膜电极电化学降解活性橙X-GN染料废水的影响。方法 通过HFCVD技术,在铌基体上分别沉积6、12、18 h的BDD薄膜,得到6-BDD/Nb、12-BDD/Nb、18-BDD/Nb电极,将三种电极作为阳极,调控降解温度,分别对活性橙X-GN染料废水进行模拟电化学氧化降解实验。采用扫描电子显微镜、拉曼光谱仪、电化学工作站分析电极性能,用紫外可见光分光光度计测量废水的吸光度。结果 随着沉积时间的延长,BDD薄膜电极表面微观结构改变,晶粒尺寸、表面粗糙度、掺硼量增加,sp3/sp2相比例升高。12-BDD/Nb、18-BDD/Nb电极的有效电极催化活性面积分别是6-BDD/Nb电极的2.6和2.8倍;常温下的降解效率分别提高1.3和1.5倍;能耗分别降低了10.8和22.6 kWh/m3。温度升高,电极的降解速率加快,能耗降低且逐渐趋于一致,最终都低至5.5 kWh/m3。结论 沉积时间增加,可以改变BDD电极微观结构,提高其电化学和氧化降解性能,降解温度升高有利于提升电极的降解速率,并降低能耗。然而升高温度可以有效提升低效电极的降解效率,却对高效电极作用甚微。  相似文献   
27.
采用热丝化学气相沉积法在不同晶粒度(0.4、0.6、1.0和2.0μm)的YG6硬质合金表面沉积硼掺杂金刚石涂层,通过扫描电镜、X射线衍射仪、拉曼光谱仪及洛氏硬度计对金刚石涂层的形貌、结构、成分、结合性能等进行分析,研究硬质合金晶粒度对金刚石涂层生长和结合性能的影响。结果表明,随硬质合金的晶粒度从0.4μm增大到2.0μm,金刚石的晶粒尺寸逐渐增大且均匀性更好,金刚石拉曼峰和石墨拉曼峰的峰强比(ID/IG)从4.74增加到6.53。膜基结合性能与涂层的内应力、金刚石的半峰宽之间都有较好的相关性,均受基体合金晶粒错配度的影响,涂层的内应力还受掺硼的影响。当硬质合金晶粒度为2.0μm时,金刚石涂层的ID/IG比值最大,为6.53;涂层的内应力最小,仅为1.588 GPa;膜基结合性能最优,在600 N压力下达到HF1级。  相似文献   
28.
目的选择合适的过渡层材料改善三维连通泡沫铜衬底与金刚石之间的结合性,制备出三维连通结构的泡沫金刚石。方法选择三维连通的泡沫铜作为衬底,使用磁控溅射技术在其表面沉积Ti、Cr过渡层,然后通过热丝化学气相沉积技术(HFCVD)在表面改性后的泡沫铜衬底上沉积金刚石涂层。通过扫描电子显微镜(SEM)、能谱分析仪(EDS)、拉曼光谱仪及红外热成像仪等仪器,对样品的表面/截面形貌、成分结构及热扩散性能进行检测与分析。结果经过Ti、Cr过渡层改性后,泡沫铜表面均能沉积出连续致密的高质量金刚石涂层,在相同的CVD沉积参数下,Cr过渡层泡沫金刚石(Cu-Cr/Dia)的晶粒尺寸更大(~5μm),晶粒质量更高,且膜层厚度大于Ti过渡层泡沫金刚石(Cu-Ti/Dia),Cu-Ti/Dia与铜衬底的结合性要优于Cu-Cr/Dia。Cu-Cr/Dia和Cu-Ti/Dia的热扩散性能均优于泡沫铜,其中Cu-Cr/Dia的热扩散能力略高于Cu-Ti/Dia。结论镀覆Ti、Cr过渡层有效增强了金刚石与泡沫铜衬底之间的界面结合,成功制备了三维连通结构的泡沫金刚石。  相似文献   
29.
用Ar气和N2气分别作为溅射气体和反应气体,采用射频反应磁控溅射法,通过调节工作气体(Ar气与N2气的混合气体)中N2的含量(体积分数)φ(N2),在硅(100)衬底上制备一系列六方结构AlN多晶薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和纳米压痕仪等对薄膜特性进行测试与分析。结果表明,φ(N2)对AlN薄膜的择优取向、结晶性、沉积速率与力学性能的影响都十分显著,对薄膜的微观结构和表面粗糙度也有一定影响:随φ(N2)增大,薄膜的厚度和沉积速率逐渐减小,结晶性也发生显著变化;较高的φ(N2)有利于AlN薄膜沿(002)晶面择优生长;φ(N2)对AlN薄膜的硬度影响较大,而对弹性模量影响较小。实验制备的AlN薄膜具有良好的纳米力学性能,硬度平均值在12.0~29.3 GPa之间,弹性模量平均值在184.0~209.8 GPa之间。  相似文献   
30.
Ultrananocrystalline diamond film was deposited by microwave chemical vapor deposition (CVD) system using Ar- CO2-CH4 as gas source. The effects of process conditions on the morphology of diamond film were investigated. Results show that the compact ultrananocrystalline films with thickness of 5 μm, crystal size of 20 nm and surface roughness below 16 nm can be deposited. The deposition rate is significantly improved by adding CO2 into the Ar-CH4 system. However, the parameter window of gas source for the deposition of compact nanodiamond films is quite narrow when this gas source is employed. Further research is needed to investigate the reasons and optimal process condition  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号