首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7239篇
  免费   385篇
  国内免费   55篇
电工技术   134篇
综合类   26篇
化学工业   1898篇
金属工艺   120篇
机械仪表   215篇
建筑科学   277篇
矿业工程   6篇
能源动力   465篇
轻工业   729篇
水利工程   77篇
石油天然气   116篇
无线电   660篇
一般工业技术   1163篇
冶金工业   346篇
原子能技术   83篇
自动化技术   1364篇
  2024年   25篇
  2023年   153篇
  2022年   320篇
  2021年   410篇
  2020年   302篇
  2019年   338篇
  2018年   418篇
  2017年   363篇
  2016年   359篇
  2015年   239篇
  2014年   323篇
  2013年   683篇
  2012年   369篇
  2011年   515篇
  2010年   359篇
  2009年   336篇
  2008年   301篇
  2007年   218篇
  2006年   210篇
  2005年   146篇
  2004年   117篇
  2003年   123篇
  2002年   94篇
  2001年   67篇
  2000年   75篇
  1999年   56篇
  1998年   84篇
  1997年   47篇
  1996年   52篇
  1995年   42篇
  1994年   38篇
  1993年   48篇
  1992年   38篇
  1991年   32篇
  1990年   30篇
  1989年   20篇
  1988年   35篇
  1987年   30篇
  1986年   20篇
  1985年   15篇
  1984年   29篇
  1983年   22篇
  1982年   22篇
  1981年   16篇
  1980年   20篇
  1979年   16篇
  1978年   17篇
  1976年   20篇
  1975年   19篇
  1974年   12篇
排序方式: 共有7679条查询结果,搜索用时 15 毫秒
171.
The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies. Early diagnosis of many diseases will improve the patient life. The cost of health care systems is reduced due to the use of advanced technologies such as Internet of Things (IoT), Wireless Sensor Networks (WSN), Embedded systems, Deep learning approaches and Optimization and aggregation methods. The data generated through these technologies will demand the bandwidth, data rate, latency of the network. In this proposed work, efficient discrete grey wolf optimization (DGWO) based data aggregation scheme using Elliptic curve Elgamal with Message Authentication code (ECEMAC) has been used to aggregate the parameters generated from the wearable sensor devices of the patient. The nodes that are far away from edge node will forward the data to its neighbor cluster head using DGWO. Aggregation scheme will reduce the number of transmissions over the network. The aggregated data are preprocessed at edge node to remove the noise for better diagnosis. Edge node will reduce the overhead of cloud server. The aggregated data are forward to cloud server for central storage and diagnosis. This proposed smart diagnosis will reduce the transmission cost through aggregation scheme which will reduce the energy of the system. Energy cost for proposed system for 300 nodes is 0.34μJ. Various energy cost of existing approaches such as secure privacy preserving data aggregation scheme (SPPDA), concealed data aggregation scheme for multiple application (CDAMA) and secure aggregation scheme (ASAS) are 1.3 μJ, 0.81 μJ and 0.51 μJ respectively. The optimization approaches and encryption method will ensure the data privacy.  相似文献   
172.
The Internet of Things (IoT) has gained more popularity in research because of its large-scale challenges and implementation. But security was the main concern when witnessing the fast development in its applications and size. It was a dreary task to independently set security systems in every IoT gadget and upgrade them according to the newer threats. Additionally, machine learning (ML) techniques optimally use a colossal volume of data generated by IoT devices. Deep Learning (DL) related systems were modelled for attack detection in IoT. But the current security systems address restricted attacks and can be utilized outdated datasets for evaluations. This study develops an Artificial Algae Optimization Algorithm with Optimal Deep Belief Network (AAA-ODBN) Enabled Ransomware Detection in an IoT environment. The presented AAA-ODBN technique mainly intends to recognize and categorize ransomware in the IoT environment. The presented AAA-ODBN technique follows a three-stage process: feature selection, classification, and parameter tuning. In the first stage, the AAA-ODBN technique uses AAA based feature selection (AAA-FS) technique to elect feature subsets. Secondly, the AAA-ODBN technique employs the DBN model for ransomware detection. At last, the dragonfly algorithm (DFA) is utilized for the hyperparameter tuning of the DBN technique. A sequence of simulations is implemented to demonstrate the improved performance of the AAA-ODBN algorithm. The experimental values indicate the significant outcome of the AAA-ODBN model over other models.  相似文献   
173.
Biomedical image processing is widely utilized for disease detection and classification of biomedical images. Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere. For removing the qualitative aspect, tongue images are quantitatively inspected, proposing a novel disease classification model in an automated way is preferable. This article introduces a novel political optimizer with deep learning enabled tongue color image analysis (PODL-TCIA) technique. The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue. To attain this, the PODL-TCIA model initially performs image pre-processing to enhance medical image quality. Followed by, Inception with ResNet-v2 model is employed for feature extraction. Besides, political optimizer (PO) with twin support vector machine (TSVM) model is exploited for image classification process, shows the novelty of the work. The design of PO algorithm assists in the optimal parameter selection of the TSVM model. For ensuring the enhanced outcomes of the PODL-TCIA model, a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.  相似文献   
174.
Wireless Personal Communications - The cell-Free massive multiple input multiple output “mMIMO” networks can provide a satisfied performance for the fifth generation “5G”...  相似文献   
175.

In this article, we will present a new set of hybrid polynomials and their corresponding moments, with a view to using them for the localization, compression and reconstruction of 2D and 3D images. These polynomials are formed from the Hahn and Krawtchouk polynomials. The process of calculating these is successfully stabilized using the modified recurrence relations with respect to the n order, the variable x and the symmetry property. The hybrid polynomial generation process is carried out in two forms: the first form contains the separable discrete orthogonal polynomials of Krawtchouk–Hahn (DKHP) and Hahn–Krawtchouk (DHKP). The latter are generated as the product of the discrete orthogonal Hahn and Krawtchouk polynomials, while the second form is the square equivalent of the first form, it consists of discrete squared Krawtchouk–Hahn polynomials (SKHP) and discrete polynomials of Hahn–Krawtchouk squared (SHKP). The experimental results clearly show the efficiency of hybrid moments based on hybrid polynomials in terms of localization property and computation time of 2D and 3D images compared to other types of moments; on the other hand, encouraging results have also been shown in terms of reconstruction quality and compression despite the superiority of classical polynomials.

  相似文献   
176.

We perceive big data with massive datasets of complex and variegated structures in the modern era. Such attributes formulate hindrances while analyzing and storing the data to generate apt aftermaths. Privacy and security are the colossal perturb in the domain space of extensive data analysis. In this paper, our foremost priority is the computing technologies that focus on big data, IoT (Internet of Things), Cloud Computing, Blockchain, and fog computing. Among these, Cloud Computing follows the role of providing on-demand services to their customers by optimizing the cost factor. AWS, Azure, Google Cloud are the major cloud providers today. Fog computing offers new insights into the extension of cloud computing systems by procuring services to the edges of the network. In collaboration with multiple technologies, the Internet of Things takes this into effect, which solves the labyrinth of dealing with advanced services considering its significance in varied application domains. The Blockchain is a dataset that entertains many applications ranging from the fields of crypto-currency to smart contracts. The prospect of this research paper is to present the critical analysis and review it under the umbrella of existing extensive data systems. In this paper, we attend to critics' reviews and address the existing threats to the security of extensive data systems. Moreover, we scrutinize the security attacks on computing systems based upon Cloud, Blockchain, IoT, and fog. This paper lucidly illustrates the different threat behaviour and their impacts on complementary computational technologies. The authors have mooted a precise analysis of cloud-based technologies and discussed their defense mechanism and the security issues of mobile healthcare.

  相似文献   
177.

Wireless sensor networks (WSNs) have become an important component in the Internet of things (IoT) field. In WSNs, multi-channel protocols have been developed to overcome some limitations related to the throughput and delivery rate which have become necessary for many IoT applications that require sufficient bandwidth to transmit a large amount of data. However, the requirement of frequent negotiation for channel assignment in distributed multi-channel protocols incurs an extra-large communication overhead which results in a reduction of the network lifetime. To deal with this requirement in an energy-efficient way is a challenging task. Hence, the Reinforcement Learning (RL) approach for channel assignment is used to overcome this problem. Nevertheless, the use of the RL approach requires a number of iterations to obtain the best solution which in turn creates a communication overhead and time-wasting. In this paper, a Self-schedule based Cooperative multi-agent Reinforcement Learning for Channel Assignment (SCRL CA) approach is proposed to improve the network lifetime and performance. The proposal addresses both regular traffic scheduling and assignment of the available orthogonal channels in an energy-efficient way. We solve the cooperation between the RL agents problem by using the self-schedule method to accelerate the RL iterations, reduce the communication overhead and balance the energy consumption in the route selection process. Therefore, two algorithms are proposed, the first one is for the Static channel assignment (SSCRL CA) while the second one is for the Dynamic channel assignment (DSCRL CA). The results of extensive simulation experiments show the effectiveness of our approach in improving the network lifetime and performance through the two algorithms.

  相似文献   
178.
Wireless Personal Communications - Software-defined networking (SDN) is widely perceived to simplify network management and monitoring. The introduction of the SDN model into wireless sensor...  相似文献   
179.
Numerical simulation has been performed to improve the performance of Cu2ZnSnS4 (CZTS) solar cells by replacing CdS with Zn1–xSnxO buffer layer. The influences of thickness, donor concentration and defect density of buffer layers on the performance of CZTS solar cells were investigated. It has been found that Zn1–xSnxO buffer layer for Sn content of 0.20 is better for CZTS solar cell. A higher efficiency can be achieved with thinner buffer layer. The optimized solar cell demonstrated a maximum power conversion efficiency of 13%.  相似文献   
180.
In this work, chaos game optimization (CGO), a robust optimization approach, is employed for efficient design of a novel cascade controller for four test systems with interconnected power systems (IPSs) to tackle load–frequency control (LFC) difficulties. The CGO method is based on chaos theory principles, in which the structure of fractals is seen via the chaotic game principle and the fractals’ self-similarity characteristics are considered. CGO is applied in LFC studies as a novel application, which reveals further research gaps to be filled. For practical implementation, it is also highly desirable to keep the controller structure simple. Accordingly, in this paper, a CGO-based controller of fractional-order (FO) proportional–integral–derivative–FO proportional–integral (FOPID–FOPI) controller is proposed, and the integral time multiplied absolute error performance function is used. Initially, the proposed CGO-based FOPID–FOPI controller is tested with and without the nonlinearity of the governor dead band for a two-area two-source model of a non-reheat unit. This is a common test system in the literature. A two-area multi-unit system with reheater–hydro–gas in both areas is implemented. To further generalize the advantages of the proposed scheme, a model of a three-area hydrothermal IPS including generation rate constraint nonlinearity is employed. For each test system, comparisons with relevant existing studies are performed. These demonstrate the superiority of the proposed scheme in reducing settling time, and frequency and tie-line power deviations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号