首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133099篇
  免费   5124篇
  国内免费   2492篇
电工技术   3468篇
技术理论   8篇
综合类   5388篇
化学工业   20126篇
金属工艺   7555篇
机械仪表   6334篇
建筑科学   6039篇
矿业工程   2307篇
能源动力   2568篇
轻工业   6483篇
水利工程   2083篇
石油天然气   4278篇
武器工业   464篇
无线电   14544篇
一般工业技术   22048篇
冶金工业   5088篇
原子能技术   783篇
自动化技术   31151篇
  2024年   193篇
  2023年   883篇
  2022年   1427篇
  2021年   2085篇
  2020年   1601篇
  2019年   1342篇
  2018年   15689篇
  2017年   14857篇
  2016年   11281篇
  2015年   2601篇
  2014年   2691篇
  2013年   3226篇
  2012年   6191篇
  2011年   12772篇
  2010年   11077篇
  2009年   8302篇
  2008年   9586篇
  2007年   10345篇
  2006年   2807篇
  2005年   3575篇
  2004年   2627篇
  2003年   2561篇
  2002年   1795篇
  2001年   1218篇
  2000年   1433篇
  1999年   1521篇
  1998年   1201篇
  1997年   981篇
  1996年   904篇
  1995年   779篇
  1994年   650篇
  1993年   480篇
  1992年   377篇
  1991年   283篇
  1990年   214篇
  1989年   153篇
  1988年   143篇
  1987年   82篇
  1986年   56篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1960年   30篇
  1959年   36篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The growing consciousness about the health risks associated with environmental pollutants has brought a major shift in global concern towards prevention of hazardous/trace metals discharge in water bodies. Majority of these trace metals gets accumulated in the body of aquatic lives, which are considered as potential indicators of hazardous content. This results in an ecological imbalance in the form of poisoning, diseases and even death of fish and other aquatic lives, and ultimately affect humans through food chain. Trace metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn originated from various industrial operations containing metallic solutions and agricultural practices, have been contributing significantly to cause aquatic pollution. The present study develops a novel approach of expressing sustainability of river’s ecosystem based on health of the fish by coupling fuzzy sensitivity analysis into multivariate analysis. A systematic methodology has been developed by generating monoplot, two dimensional biplot and rotated component matrix (using ‘Analyze it’ and ‘SPSS’ software), which can simultaneously identify critical trace metals and their industrial sources, critical sampling stations, and adversely affected fish species along with their interrelationships. A case study of assessing the impact of trace metals on the aquatic life of river Ganges, India has also been presented to demonstrate effectiveness of the model. The clusters pertaining to various water quality parameters have been identified using Principal Component Analysis (PCA) to determine actual sources of pollutants and their impact on aquatic life. The fuzzy sensitivity analysis reveals the cause-effect relationship of these critical parameters. The study suggests pollution control agencies to enforce appropriate regulations on the wastewater dischargers responsible for polluting river streams with a particular kind of trace metal(s).  相似文献   
992.
The peak flow of extraordinary large floods that occur during a period of systematic record is a controversial problem for flood frequency analysis (FFA) using traditional methods. The present study suggests that such floods be treated as historic flood data even though their historical period is unknown. In this paper, the extraordinary large flood peak was first identified using statistical outlier tests and normal probability plots. FFA was then applied with and without the extraordinary large floods. In this step, two goodness-of-fit tests including mean absolute relative deviation and mean squared relative deviation were used to identify the best-fit probability distributions. Next, the generalized extreme value (GEV), three-parameter lognormal (LN3), log-Pearson type III (LP3), and Wakeby (WAK) probability distributions were used to incorporate and adjust the extraordinary large floods with other systematic data. Finally, procedures with and without historical adjustment were compared for the extraordinary large floods in terms of goodness-of-fit and flood return-period quantiles. The results of this comparison indicate that historical adjustment from an operational perspective was more viable than without adjustment procedure. Furthermore, the results without adjustment were unreasonable (subject to over- and under-estimation) and produced physically unrealistic estimates that were not compatible with the study area. The proposed approach substantially improved the probability estimation of rare floods for efficient design of hydraulic structures, risk analysis, and floodplain management.  相似文献   
993.
994.
The success of hydraulic simulation models of water distribution networks is associated with the ability of these models to represent real systems accurately. To achieve this, the calibration phase is essential. Current calibration methods are based on minimizing the error between measured and simulated values of pressure and flow. This minimization is based on a search of parameter values to be calibrated, including pipe roughness, nodal demand, and leakage flow. The resulting hydraulic problem contains several variables. In addition, a limited set of known monitored pressure and flow values creates an indeterminate problem with more variables than equations. Seeking to address the lack of monitored data for the calibration of Water Distribution Networks (WDNs), this paper uses a meta-model based on an Artificial Neural Network (ANN) to estimate pressure on all nodes of a network. The calibration of pipe roughness applies a metaheuristic search method called Particle Swarm Optimization (PSO) to minimize the objective function represented by the difference between simulated and forecasted pressure values. The proposed method is evaluated at steady state and over an extended period for a real District Metering Area (DMA), named Campos do Conde II, and the hypothetical network named C-town, which is used as a benchmark for calibration studies.  相似文献   
995.
Deriving the optimal policies of hydropower multi-reservoir systems is a nonlinear and high-dimensional problem which makes it difficult to achieve the global or near global optimal solution. In order to optimally solve the problem effectively, development of optimization methods with the purpose of optimizing reservoir operation is indispensable as well as inevitable. This paper introduces an enhanced differential evolution (EDE) algorithm to enhance the exploration and exploitation abilities of the original differential evolution (DE) algorithm. The EDE algorithm is first applied to minimize two benchmark functions (Ackley and Shifted Schwefel). In addition, a real world two-reservoir hydropower optimization problem and a large scale benchmark problem, namely ten-reservoir problem, were considered to indicate the effectiveness of the EDE. The performance of the EDE was compared with the original DE to solve the three optimization problems. The results demonstrate that the EDE would have a powerful global ability and faster convergence than the original DE to solve the two benchmark functions. In the 10-reservoir optimization problem, the EDE proved to be much more functional to reach optimal or near optimal solution and to be effective in terms of convergence rate, standard deviation, the best, average and worst values of objective function than the original DE. Also, In the case of two-reservoir system, the best values of the objective function obtained 93.86 and 101.09 for EDE and DE respectively. Based on the results, it can be stated that the most important reason to improve the performance of the EDE algorithm is the promotion of local and global search abilities of the DE algorithm using the number of novel operators. Also, the results of these three problems corroborated the superior performance, the high efficiency and robustness of the EDE to optimize complex and large scale multi-reservoir operation problems.  相似文献   
996.
This study extends the PSO-MODSIM model, integrating particle swarm optimization (PSO) algorithm and MODISM river basin decision support system (DSS) to determine optimal basin-scale water allocation, in two aspects. The first is deriving hydrologic state-dependent (conditional) operating rules to better account for drought and high-flow periods, and the second is direct, explicit consideration of sustainability criteria in the model’s formulation to have a better efficiency in basin-scale water allocation. Under conditional operating rules, the operational parameters of reservoir target storage levels and their priority rankings were conditioned on the hydrologic state of the system in a priority-based water allocation scheme. The role of conditional operating rules and policies were evaluated by comparing water shortages associated with objective function values under unconditional and conditional operating rules. Optimal basin-scale water allocation was then evaluated by incorporating reliability, vulnerability, reversibility and equity sustainability indices into the PSO objective function. The extended model was applied for water allocation in the Atrak River Basin, Iran. Results indicated improved distribution of water shortages by about 7.5% using conditional operating rules distinguishing dry, normal and wet hydrologic states. Alternative solutions with nearly identical objective function values were found with sustainability indices included in the model.  相似文献   
997.
Medium-Term Hydro Generation Scheduling (MTHGS) plays an important role in the operation of hydropower systems. In the first place, this paper presents a Chance Constrained Model for solving the optimal MTHGS problem. The model recognizes the impact of inflow uncertainty and the constraints involving hydrologic parameters subjected to uncertainty are described as probabilistic statements. It aims at providing a more practical technique compared to the traditional deterministic approaches used for MTHGS. The stochastic inflow is expressed as a simple discrete-time Markov chain and Stochastic Dynamic Programming is adopted to solve the model. Then in order to use the information of long-term inflow forecast to improve dispatching decisions, a Dynamic Control Model is developed. Short-term forecast results of the current period and long-term forecast results of the remaining period are treated as inputs of the model. Finally, the two methods are applied to MTHGS of Xiluodu hydro plant in China. The results are compared to those obtained from Deterministic Dynamic Programming with hindsight and advantages and disadvantages of the two methods are analyzed.  相似文献   
998.
Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies.  相似文献   
999.
Water is a vital resource for life on earth; hence its maintenance is very important. Different regions especially in arid and semi-arid areas are facing population growth and subsequent increase in the domestic, industrial and agricultural activities. Planning of water systems in order to be ready for future development conditions needs further studies on the estimation of the sustainable levels of demands based on the sustainable levels of supplies. In this study a threefold approach for estimating sustainability level of supply and demand in Ahachay river basin in northwestern part of Iran as a case study is taken. In the first method, the internal flows and the origins and final uses of the total resources for each subsystem are estimated and planning for sustainability use index is determined by calculating the available water. Second method introduced a simulation model which is utilized to estimate reliability, resiliency, vulnerability and maximum deficit for a river basin to determine a group sustainability index. In the third method, for evaluating the movement toward sustainability, an index is developed. This index includes parameters that are the difference between supply and demand, percentage of the satisfied demand, productivity of water resources and an indicator for evaluating the reduction of aquifer storage. Finally these methods are compared and a hybrid index combining the indices is developed. An uncertainty analysis is also performed to investigate the random nature of variables in estimating water balance and quantifying the water sustainability. This hybrid index can be used for evaluating the planning scenarios and for maintaining and improving the sustainable state of supply-demand for the region.  相似文献   
1000.
The precise forecasting of water consumption is the basis in water resources planning and management. However, predicting water consumption fluctuations is complicated, given their non-stationary and non-linear characteristics. In this paper, a multiple random forests model, integrated wavelet transform and random forests regression (W-RFR), is proposed for the prediction of daily urban water consumption in southwest of China. Raw time series were first decomposed into low- and high-frequency parts with discrete wavelet transformation (DWT). The random forests regression (RFR) method was then used for prediction using each subseries. In the process, the input and output constructions of the RFR model were proposed for each subseries on the basis of the delay times and the embedding dimension of the attractor reconstruction computed by the C-C method, respectively. The forecasting values of each subseries were summarized as the final results. Four performance criteria, i.e., correlation coefficient (R), mean absolute percentage error (MAPE), normalized root mean square error (NRMSE) and threshold static (TS), were used to evaluate the forecasting capacity of the W-RFR. The results indicated that the W-RFR can capture the basic dynamics of the daily urban water consumption. The forecasted performance of the proposed approach was also compared with those of models, i.e., the RFR and forward feed neural network (FFNN) models. The results indicated that among the models, the precision of the predictions of the proposed model was greater, which is attributed to good feature extractions from the multi-scale perspective and favorable feature learning performance using the decision trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号