首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381175篇
  免费   29713篇
  国内免费   15263篇
电工技术   21520篇
技术理论   58篇
综合类   23728篇
化学工业   63488篇
金属工艺   21491篇
机械仪表   24975篇
建筑科学   29993篇
矿业工程   12428篇
能源动力   11143篇
轻工业   22215篇
水利工程   6500篇
石油天然气   25279篇
武器工业   3157篇
无线电   42705篇
一般工业技术   44728篇
冶金工业   20212篇
原子能技术   3849篇
自动化技术   48682篇
  2024年   1208篇
  2023年   5682篇
  2022年   9850篇
  2021年   14604篇
  2020年   11245篇
  2019年   9104篇
  2018年   10387篇
  2017年   11958篇
  2016年   10679篇
  2015年   14448篇
  2014年   18695篇
  2013年   22636篇
  2012年   24008篇
  2011年   26718篇
  2010年   22983篇
  2009年   22049篇
  2008年   21626篇
  2007年   20643篇
  2006年   21199篇
  2005年   18497篇
  2004年   11887篇
  2003年   10324篇
  2002年   9298篇
  2001年   8537篇
  2000年   8893篇
  1999年   10451篇
  1998年   8805篇
  1997年   7286篇
  1996年   6861篇
  1995年   5798篇
  1994年   4728篇
  1993年   3374篇
  1992年   2675篇
  1991年   2131篇
  1990年   1616篇
  1989年   1318篇
  1988年   1074篇
  1987年   687篇
  1986年   552篇
  1985年   351篇
  1984年   242篇
  1983年   215篇
  1982年   209篇
  1981年   137篇
  1980年   142篇
  1979年   79篇
  1978年   35篇
  1977年   41篇
  1976年   59篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
41.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
42.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
43.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
44.
45.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
46.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
47.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
48.
Jingdezhen is famous for its bluish white (Qingbai) porcelains of the Song Dynasty, and those decorated with iron spots are distinctive among them. Herein, iron spots on a bluish white porcelain were investigated using a series of microscopic and spectroscopic characterizations. We found the decreasing iron content from more than 8 wt% to about 2 wt% during the glaze color transition from rusty to brown and finally into green, which built a connection on the coloring mechanism of iron-rich crystallized glaze and celadon glaze. We identified the rare ε-Fe2O3, a promising magnetic material, in both the dark brown crystals and the triangular crystals in the rusty area, which is its first discovery among bluish white porcelains. Based on these findings, we discussed the coloring mechanism of iron-spot decoration along with the physical form of the iron oxide crystals, indicating the partially reducing atmosphere during firing process.  相似文献   
49.
Thermal action in extraction process had effects on characteristic tryptic peptides identification and gelling properties of porcine gelatin. SDS-PAGE, HPLC-LTQ/Orbitrap high-resolution mass spectrometry, texture analyser and rheometer were used to evaluate collagen depolymerisation degree, characteristic tryptic peptides and gelling properties of gelatins prepared in various thermal actions. Results showed that with increasing temperature and time, depolymerisation degree enlarged, while gel strength, gelling and melting temperature decreased. Mass spectra showed that 47 and 49 common characteristic tryptic peptides were identified in gelatins extracted at 50 °C and 100 °C with various times, respectively. Moreover, 34 common characteristic tryptic peptides were identified in all gelatin samples. Further comparison between this work and our previous investigations yielded 20 common characteristic tryptic peptides, which stably exist in various thermal actions. These common characteristic tryptic peptides may be very helpful for the accurate authentication of porcine gelatin.  相似文献   
50.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号