The demand of low power high density integrated circuits is increasing in modern battery operated portable systems. Sub-threshold region of MOS transistors is the most desirable region for energy efficient circuit design. The operating ultra-low power supply voltage is the key design constraint with accurate output performance in sub-threshold region. Degrading of the performance metrics in Static random access memory (SRAM) cell with process variation effects are of major concern in sub-threshold region. In this paper, a bootstrapped driver circuit and a bootstrapped driver dynamic body biasing technique is proposed to assist write operation which improves the write-ability of sub-threshold 8T-SRAM cell under process variations. The bootstrapped driver circuit minimizes the write delay of SRAM cell. The bootstrapped driver dynamic body bias increases the output voltage levels by boosting factor therefore increasing in switching threshold voltage of MOS devices during hold and read operation of SRAM latch. The increment in threshold voltage improves the static noise margin and minimizing the process variation effects. Monte-Carlo simulation results with 3\(\sigma \) Gaussian distributions show the improvements in write delay by 11.25 %, read SNM by 12.20 % and write SNM by 12.57 % in 8T-SRAM cell under process variations at 32 nm bulk CMOS process technology node. 相似文献
This paper proposes the design of three compact antennas for WiMAX, WLAN and ISM band applications. Antenna 1 consists of a monopole radiating element with an electromagnetic band gap (EBG) structured ground. By employing the EBG structure, an ultra-wide band frequency of 2.4–4.8 GHz (66.66%) is achieved. Antenna 2 is configured with an electric-LC (ELC) element, which achieved an ultra-wide band (UWB) frequency of 2.38–4.91 GHz (69.41%). Antenna 3 is integrated with ELC and EBG together, in which a UWB frequency of 2.3–5.3 GHz (78.94%) is obtained with improved impedance matching. The three antennas have omnidirectional radiation patterns which cover the ISM band at 2.4 GHz and WiMAX at 2.5/3.5 GHz over the operating bands. The radiation efficiency is?>?75% throughout the operating bands of all the antennas. In addition to the WiMAX and ISM bands, antenna 3 covers WLAN in the 5.2 GHz band. The proposed design can be applied to wireless mobile communication systems, which have the advantage of ease of fabrication and compactness.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1?xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications. 相似文献
In this paper, multiscale principal component analysis (MSPCA) is proposed for multichannel electrocardiogram (MECG) data compression. In wavelet domain, principal components analysis (PCA) of multiscale multivariate matrices of multichannel signals helps reduce dimension and remove redundant information present in signals. The selection of principal components (PCs) is based on average fractional energy contribution of eigenvalue in a data matrix. Multichannel compression is implemented using uniform quantizer and entropy coding of PCA coefficients. The compressed signal quality is evaluated quantitatively using percentage root mean square difference (PRD), and wavelet energy-based diagnostic distortion (WEDD) measures. Using dataset from CSE multilead measurement library, multichannel compression ratio of 5.98:1 is found with PRD value 2.09% and the lowest WEDD value of 4.19%. Based on, gold standard subjective quality measure, the lowest mean opinion score error value of 5.56% is found. 相似文献
We consider a scenario where devices with multiple networking capabilities access networks with heterogeneous characteristics. In such a setting, we address the problem of efficient utilization of multiple access networks by devices via optimal assignment of traffic flows with given utilities to different networks. We develop and analyze a device middleware functionality that monitors network characteristics and employs a Markov Decision Process (MDP) based control scheme that in conjunction with stochastic characterization of the available bit rate and delay of the networks generates an optimal policy for allocation of flows to different networks. The optimal policy maximizes, under available bit rate and delay constraints on the access networks, a discounted reward which is a function of the flow utilities. The flow assignment policy is periodically updated and is consulted by the flows to dynamically perform network selection during their lifetimes. We perform measurement tests to collect traces of available bit rate and delay characteristics on Ethernet and WLAN networks on a work day in a corporate work environment. We implement our flow assignment framework in ns-2 and simulate the system performance for a set of elastic video-like flows using the collected traces. We demonstrate that the MDP based flow assignment policy leads to significant enhancement in the QoS provisioning (higher rate allocation, lower packet delays and packet loss rates) for the flows and better access network utilization, as compared to policies that allocate flows to different networks using greedy approaches or heuristics like average available bit rate on the networks. 相似文献
This paper presents a robust digital video-watermarking system for copyright and copy protection. The proposed method applies the combination of discrete wavelet transform (DWT) and scene-change-detector. For better understanding, this approach can be presented in the form of four stages. The first stage is finding the frame where the watermark is to be inserted. The analysis of watermarking using the level-3 decomposition of LL subband withDWTis described in the second stage. Transparency and the robustness have been analyzed under fifteen different attacks in the third stage. Improvement in the robustness and transparency, as compare to watermarking using different levels of LL subband is calculated in terms of the normalized correlation and the structural similarity index in the fourth stage. The experimental result reveal that the proposed method yields the extracted watermark image and watermarked video of good quality and can sustain different image processing, JPEG compression and geometrical attacks. Empirical results prove the improvement in the performance as the decomposition level increases from level-1 to level-3. Comparative analysis with the existing schemes proves the improved robustness, better imperceptibility and the reduced computational time of the proposed scheme. 相似文献
In the Frequency Division Duplex (FDD) mode of the Third Generation Partnership Project (3GPP) standard, implementation of the turbo decoder, especially for the mobile equipments, faces design decisions related to computational complexity, power efficiency, and memory requirements. In this paper we compare different approaches of low complexity implementation of the turbo decoder, with emphasis on the issues of signal scaling and quantization, the sliding window operation for memory size reduction and the iteration stopping algorithms. The demodulated signal at the output of the RAKE receiver may have a wide dynamic range and it may require many bits of precision. In order to overcome the numerical precision problem and to prevent Log Likelihood ratio (LLR) metric overflow, a scaling algorithm must be used. Our simulation results indicate that the Average Absolute (AA) algorithm using dynamic scaling outperforms other scaling schemes and it is less sensitive to the channel conditions. One of the major challenges in the implementation of a practical turbo decoder is optimization of memory requirements. In this paper we evaluate the performance of the sliding window algorithm using different main and guard window sizes. We show that the bit and block error rate performance of the sliding window scheme mainly depend on the guard window size rather than the main window size. The simulation results indicate that small guard window sizes can significantly decrease the iteration gain for large frames in fast fading channels. Iteration stopping algorithms reduce the power consumption and the latency of the decoder and help to dedicate more resources to other functions of the receiver. The block error distribution in the fading channels makes it even more essential to use an iteration stopping rule. Our simulations conclude that a rule called the minimum absolute value appears to be a very effective, low complexity and robust algorithm.
Mohamadreza Marandian Hagh was born in Tabriz, Iran on January 1974. He received the B.S. and the M.S. degrees in electrical engineering from Tehran University with honors in 1996 and 1999, respectively. He is pursuing the Ph.D. degree in electrical engineering at Northeastern University, Boston. His research interests includes information theory, channel coding and iterative techniques for wireless communication systems. His current research is focused on low complexity designs for iterative receivers using Space-Time coding in time-dispersive channels. He is also interested in Exit-Chart analysis of iterative receivers. From 1996 to 1999, he was with Sana Pro Inc. as a system engineer, developing simulation tools for OFDM, WCDMA, CDMA2000. He is currently with Airvana Inc. in Chelmsford, MA and working on 1xEVDO wireless systems.
Masoud Salehi received BS degree (Summa Cum Laude) from Tehran University and MS and Ph.D. degrees from Stanford University all in Electrical Engineering. Before joining Northeastern, he was with the Departments of Electrical and Computer Engineering, Isfahan University of Technology and Tehran University. From February 1988 to May 1989 Dr. Salehi was a visiting professor at the Information Theory Research Group, Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands, where he did research in network information theory and coding for storage media.In 1989 Dr. Salehi joined Department of Electrical and Computer Engineering, Northeastern University. Professor Salehi is a member of the CDSP (Communication and Digital Signal Processing) Center. His main areas of research interest are network information theory, source-channel matching problems in single and multiple user systems, data compression, turbo coding, coding for fading channels, and digital watermarking. Professor Salehi’s research has been supported by research grants from the National Science Foundation (NSF), GTE, NUWC, CenSSIS, and Analog Devices. Professor Salehi has also done consulting to the industry including Teleco Oilfield Services and AT&T. Professor Salehi is currently a member of the Editorial Board of The International Journal of Electronics and Communications.Professor Salehi is the coauthor of the textbooks “Communication Systems Engineering”, Prentice-Hall 1994, 2002, “Contemporary Communication Systems Using MATLAB and Simulink” Thomson 1998, 2000, 2004, and “Fundamentals of Communication Systems”, Prentice-Hall 2005.
Abhay Sharma received B.E. (Hons) Electrical and Electronics Engineering degree from Birla Institute of Technology and Science, Pilani, India in 1996 and M.S. Electrical Engineering degree from Ohio State University, Columbus in 2000. From 2000 to 2005 he was working with Analog Devices, RF and Wireless Systems Group, Wilmington, USA, where he was working on design and implementation of algorithms for the emerging cellular communication standards. Currently he is working with Allgo Embedded Systems, Bangalore, India, in the area of wireless networks and systems based on the emerging W-PAN wireless technologies.
Zoran Zvonar received the Dipl. Ing. degree in 1986 and the M.S. degree in 1989, both from the Department of Electrical Engineering, University of Belgrade, Yugoslavia, and the Ph.D. degree in Electrical Engineering from the Northeastern University, Boston, in 1993.From 1986 to 1989 he was with the Department of Electrical Engineering, University of Belgrade, Belgrade, Yugoslavia, where he conducted research in the area of telecommunications. 1993 to 1994 he was a Post-Doctoral investigator at the Woods Hole Oceanographic Institution, Woods Hole, MA, anconducted research on multiple-access communications for underwater acoustic networks. Since 1994 he has been with the Analog Devices, Communications Division, Wilmington, USA. He is the Manager of the Systems Engineering Group focusing on the design of algorithms and architectures for wireless communications, with emphasis on integrated solutions and real-time software.He was a Guest Editor of the IEEE Transactions on Vehicular Technology, the International Journal of Wireless Information Networks and the ACM/Baltzer Wireless Networks, Associate Editor of the IEEE Communications Letters and a co-editor of the books GSM: Evolution Towards Third Generation Systems, Kluwer Academic Publishers, 1998, Wireless Multimedia Networks Technologies, Kluwer Academic Publishers, 1999 and Software Radio Technologies: Selected Reading, IEEE Press, 2001. Dr. Zvonar is currently Co-Editor of the Radio Communication Series in the IEEE Communications Magazine. 相似文献
[6,6]‐phenyl‐C‐61‐butyric acid methyl ester (PCBM) and poly(3‐hexylthiophene) (P3HT) are the most widely used acceptor and donor materials, respectively, in polymer solar cells (PSCs). However, the low LUMO (lowest unoccupied molecular orbital) energy level of PCBM limits the open circuit voltage (Voc) of the PSCs based on P3HT. Herein a simple, low‐cost and effective approach of modifying PCBM and improving its absorption is reported which can be extended to all fullerene derivatives with an ester structure. In particular, PCBM is hydrolyzed to carboxylic acid and then converted to the corresponding carbonyl chloride. The latter is condensed with 4‐nitro‐4’‐hydroxy‐α‐cyanostilbene to afford the modified fullerene F . It is more soluble than PCBM in common organic solvents due to the increase of the organic moiety. Both solutions and thin films of F show stronger absorption than PCBM in the range of 250–900 nm. The electrochemical properties and electronic energy levels of F and PCBM are measured by cyclic voltammetry. The LUMO energy level of F is 0.25 eV higher than that of PCBM. The PSCs based on P3HT with F as an acceptor shows a higher Voc of 0.86 V and a short circuit current (Jsc) of 8.5 mA cm?2, resulting in a power conversion efficiency (PCE) of 4.23%, while the PSC based on P3HT:PCBM shows a PCE of about 2.93% under the same conditions. The results indicate that the modified PCBM, i.e., F , is an excellent acceptor for PSC based on bulk heterojunction active layers. A maximum overall PCE of 5.25% is achieved with the PSC based on the P3HT: F blend deposited from a mixture of solvents (chloroform/acetone) and subsequent thermal annealing at 120 °C. 相似文献
Grouped multilevel space-time trellis codes (GMLSTTCs) utilize multilevel coding (MLC), antenna grouping and space time trellis codes (STTCs) for simultaneously providing coding gain, diversity improvement and increased spectral efficiency. The performance of GMLSTTCs is limited due to predefining of the antenna groups. It has been shown that when perfect or partial channel state information is available at the transmitter, the performance and capacity of space-time coded system can be further improved. In this paper, we present a new code designed by combining MLC, STTCs, antenna grouping and channel state information at transmitter, henceforth referred to as adaptively grouped multilevel space time trellis codes (AGMLSTTCs). AGMLSTTCs use a single full-diversity STTC at initial some levels and multiple STTCs at some later levels. The single full diversity STTC at each initial level spans all transmit antennas and the STTC at each later level spans a group of transmit antennas. The channel state information at the transmitter is used to adaptively group the transmit antennas for the later levels. Instantaneous channel power gain is calculated between each transmit antenna and all the receive antennas. A subset of transmit antennas having maximum channel power gain is selected to form a group. The simulation results show that AGMLSTTCs enable to transmit more than one data symbol per time slot with improved error performance over GMLSTTCs with predefined transmit antenna grouping. 相似文献