首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321016篇
  免费   28551篇
  国内免费   15881篇
电工技术   20591篇
技术理论   21篇
综合类   22469篇
化学工业   51492篇
金属工艺   19063篇
机械仪表   21139篇
建筑科学   26108篇
矿业工程   10022篇
能源动力   9372篇
轻工业   20785篇
水利工程   6369篇
石油天然气   19320篇
武器工业   2962篇
无线电   36780篇
一般工业技术   36460篇
冶金工业   15100篇
原子能技术   3908篇
自动化技术   43487篇
  2024年   1432篇
  2023年   4923篇
  2022年   8921篇
  2021年   12557篇
  2020年   9567篇
  2019年   7916篇
  2018年   8789篇
  2017年   10150篇
  2016年   9022篇
  2015年   12686篇
  2014年   15927篇
  2013年   18971篇
  2012年   20905篇
  2011年   23025篇
  2010年   20651篇
  2009年   19698篇
  2008年   19653篇
  2007年   18760篇
  2006年   18648篇
  2005年   15858篇
  2004年   11001篇
  2003年   9582篇
  2002年   9218篇
  2001年   8113篇
  2000年   7663篇
  1999年   7739篇
  1998年   6135篇
  1997年   5231篇
  1996年   4826篇
  1995年   4041篇
  1994年   3289篇
  1993年   2355篇
  1992年   1897篇
  1991年   1472篇
  1990年   1130篇
  1989年   945篇
  1988年   756篇
  1987年   531篇
  1986年   373篇
  1985年   230篇
  1984年   201篇
  1983年   142篇
  1982年   159篇
  1981年   105篇
  1980年   93篇
  1979年   40篇
  1977年   17篇
  1976年   12篇
  1959年   23篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
41.
Wheat bran is rich in functional ingredients, but the high level of lipase limits its applications. Tempering–preservation treatment (at 70–90 °C with moisture of 20%–40% for 1–4 h) was exploited for stabilising wheat bran and its effect on polyphenols was investigated. The results showed that more lipase was inactivated at higher tempering moisture, temperature and longer time. The optimum condition for inactivation of wheat bran lipase was 30% moisture and 90 °C for 4 h. The inactivation rate reached 93.8% with a residual enzyme activity of 0.264 U g−1. Under the optimum condition, the sum of free phenolic acids rose from 25.4 to 55.8 µg g−1. As for bound phenolic acids, there was a slight increase of hydroxybenzoic acid derivatives but a slight decrease of hydroxycinnamic acid derivatives. The total contents of phenolic acids before and after stabilisation were not significantly different. This study showed the possibility of using tempering–preservation as an efficient method for inactivation of wheat bran lipase while maintaining its phenolic compounds, which could be used in the production of whole wheat flour.  相似文献   
42.
针对目前集成电路版图分析与设计课程存在教学方法老化、教学模式形式化等问题,本文以OBE-CDIO教育理念为指导,对”集成电路版图分析与设计”课程的课程教学模式、课程设计、项目式教学方式和课程考核方式等方面的改革进行有益的探索与实践。将工程教学认证中对学生的专业毕业要求作为制定教学目标的依据,将BB网络平台、ISO9001等现代化教学资源和质量标准融入课堂教学,采用OBE-CDIO能力教学理念指导课程设计,实现教学环节与考核环节的科学化与多元化,通过引入课程思政激发学生学习热情,树立社会主义核心价值观,全面地培养学生的综合版图分析与设计能力和素养。  相似文献   
43.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
44.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
45.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
46.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
47.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
48.
International Journal of Control, Automation and Systems - The vibration control problem of offshore jacket platforms is studied. The model of offshore platforms with nonlinear interactions of the...  相似文献   
49.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号