首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学工业   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Chemical treatment is a facile method for improving electrochemical properties of a heterogeneous ion‐exchange membrane. In this work, polyvinylchloride (PVC)‐based heterogeneous cation‐exchange membrane is prepared by a dry–wet phase inversion process. The membrane is treated with a sulfuric acid solution in a room and a high temperature (80 °C). Effects of the treatment procedure and hydrophilic additive on membrane electrochemical properties are investigated. Chemically treated PVC and PVC/additive heterogeneous cation‐exchange membranes show a change in membrane electrochemical properties in terms of water uptake (Wu), conductivity, ion‐exchange capacity (IEC), and permselectivity (Ps). In general, Wu and conductivity increase after the chemical treatment. Significant improvement is observed when a high temperature is used. Meanwhile, the conductivity is more pronounced for PVC/additive membranes. The improvement may be associated with an increase in hydrophilicity. A significant increase in IEC is also observed for modified PVC/additive membrane. This may be associated with the removal or leaching of the additive during the treatment which in turn increases the portion of ion‐exchange resins in the membrane. Most of the modified membranes show a decrease in Ps. It may be due to a decrease in the effectiveness of Donnan effect indicated by Donnan equilibrium constant (K+). POLYM. ENG. SCI., 59:E219–E226, 2019. © 2018 Society of Plastics Engineers  相似文献   
2.
Considerable effort has been made to improve ion‐exchange membrane (IEM) properties in order to achieve better performance of IEM‐based processes in various applications. Surface modification is one of the effective ways to improve IEM properties. Various methods have been used to modify IEM surfaces, for example, plasma treatment, polymerization, solution casting, electrodeposition, and ion implantation. These methods are able to produce a thin and fine distributed layer and also to modify the chemical structure of the surface. The new layer can be adsorbed, deposited, or chemically bonded on a membrane surface. By using these methods, IEM properties are improved, and the desired or specific characteristics such as high monovalent ion permselectivity, low fuel crossover, and anti‐organic‐fouling property can be obtained. In this paper, methods for surface modification of IEMs are reviewed. Moreover, the effects of modification on IEM properties and performance are discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45540.  相似文献   
3.
Membrane solution composition is one of the important factors that determine properties of ion‐exchange membranes. In this study, PVC‐based heterogeneous cation‐exchange membranes were prepared by the solution casting method. Effects of a hydrophilic additive [poly(ethylene glycol), PEG400] and degree of polymerization of poly(vinyl chloride) (PVC) on the morphology and electrochemical properties of the cation‐exchange membranes were investigated. The results revealed that the hydrophilic additive can improve membrane properties, including water uptake (Wu), ion‐exchange capacity (IEC), conductivity, and permselectivity. The improvements might be associated with an increase in accessibility of functional sites in the membrane matrix due to a higher hydrophilicity, indicated by a reduction of water contact angle and the greater void fraction shown by scanning electron microscopy. However, the permselectivity slightly decreased when the additive concentration was increased further. Meanwhile, increasing the degree of polymerization and PVC concentration resulted in higher permselectivity and lower conductivity, which might be due to a better resin distribution and a lower void fraction. Overall, the prepared membranes had relatively good conductivities (up to ~2.5 mS/cm) and permselectivities (up to ~0.92). In general the conductivity increased with increasing Wu and IEC, while the permselectivity showed the opposite trends. This could be associated with the efficacy of Donnan exclusion indicated by the IEC/Wu ratio and the Donnan equilibrium constant of the cation (K+). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46690.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号