首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   15篇
电工技术   1篇
化学工业   91篇
机械仪表   4篇
建筑科学   11篇
能源动力   6篇
轻工业   10篇
水利工程   2篇
无线电   11篇
一般工业技术   18篇
冶金工业   5篇
原子能技术   1篇
自动化技术   14篇
  2023年   1篇
  2022年   4篇
  2021年   11篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   12篇
  2013年   9篇
  2012年   9篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
1.
The post-treatment of domestic sewage pretreated in a 6 m3 UASB was investigated in two high-rate anaerobic filter (AF) reactors operated in parallel. The difference between the two AF reactors was only the addition of cationic polymer to the second reactor (AF + P). The reactors were operated at low temperatures, ranged between 13 and 20 degrees C. The media in each AF reactor consisted of vertical sheets of reticulated-polyurethane foam (RPF) with knobs. The results demonstrated that the AF + P reactor (HRT = 3 h) with cationic polymer addition (2 mg/L) was an efficient system for post-treatment. The removal efficiencies for total, suspended, colloidal and dissolved COD were, respectively, 41, 86 and 76 and 12% in the AF + P reactor and they were, respectively, 80, 97, 77 and 66% in the UASB + (AF + P) system. The removal of total, suspended and colloidal COD in the UASB + (AF + P) system were significantly higher than those achieved in the UASB + AF system. As hardly any nutrient was removed in the UASB + (AF + P) system, the effluent after pathogen removal is a valuable product for irrigation and fertilisation to close the water and nutrients cycle.  相似文献   
2.
Summary Both preferential adsorption coefficient λ and intrinsic viscosity [η] for poly (di-o-alkylphenyl methacrylates) /Tetrahydrofuran (THF)/water have been determined. The results are discussed in relation to the steric effect of the ortho-substituent groups on the aromatic ring.  相似文献   
3.
Chitosan (CS)/poly(vinyl alcohol) (PVA) and Chitosan/poly(2-hydroxyethyl methacrylate) (P2HEM) blends have been studied through molecular dynamic simulations. In a previous work it was found miscibility between these polymers and it was attributed to hydrogen bonding formation. However, the experimental information obtained was not enough to know which of the interacting groups of Chitosan, i.e. -CH2OH or -NH2, are responsible of the interaction. Therefore, we have performed molecular dynamics simulation runs of 1 ns in order to calculate radial distribution functions (RDF) for the groups tentatively involved in the interaction. The results are correlated with our previous experimental data. This way, we have obtained a more precise conclusive information about the interactions involved as function of the blends composition. For low compositions of PVA and P2HEM the interaction is predominantly with the hydroxymethyl groups of CS while as the composition of PVA and P2HEM increases, the interaction with the amine groups increases.  相似文献   
4.
A versatile potentiometer that works with electrode arrays in flow injection and/or monosegmented flow systems is described. The potentiometer is controlled by a microcomputer that allows individual, sequential multiplexed or random accesses to eight electrodes while employing only one reference electrode. The instrument was demonstrated by monitoring an array of seven flow-through ion-selective electrodes for Ag(+) and for three electrodes for Cl(-), Ca(2+) and K(+). The figures of merit of the individual and multiplexed (summed) readings of the electrode array were compared. The absolute standard deviation of the measurements made by summing the potential of two or more electrodes was maintained constant, thus improving the precision of the measurements. This result shows that an attempt to combine the signals of the electrodes to produce a more intense signal in the Hadamard strategy is feasible and accompanied by a proportional improvement in the precision of individual measurements. The preliminary tests suggest that the system can allow for 270 determinations per hour, with a linear range from 1.0 x 10(-2) to 1.0 x 10(-4) mol l(-1) for the three di inverted exclamation markerent analytes. Detection limits were estimated as 3.1 x 10(-5), 3.0 x 10(-6) and 1.0 x 10(-5) mol l(-1) for Cl(-), Ca(2+) and K(+), respectively.  相似文献   
5.
The electrocatalysis of the oxygen reduction reaction (ORR) on carbon supported Pt:V 1:1 catalyst in polymer electrolyte fuel cells (PEFC) was investigated. At an oxygen pressure of 1 atm results indicate a lower electrocatalytic activity for the ORR in the presence of vanadium. However, at an O2 pressure ≥2 atm an enhanced electrocatalytic property of PtV/C compared with Pt/C is revealed. This result indicates the occurrence of a different electrocatalytic mechanism for the ORR on Pt/C and PtV/C. An increase of mass transport overpotentials is observed for the PtV/C catalyst, and this was related to the presence of vanadium oxide. Indeed, XRD analysis revealed that only about 30% of V present in the catalyst is alloyed with Pt, forming a face centred cubic (fcc) Pt3V solid solution. A thermal treatment at 850 °C under reducing atmosphere leads to the formation of an ordered fcc Pt2V phase. After this, the ORR activity of PtV/C at O2 pressure 1 atm is higher than that of Pt/C.  相似文献   
6.
We have studied blends of a polymer liquid crystal (PLC) with poly(cyclohexylethyl methacrylate) (PCHEMA) or poly(cyclohexylpropyl methacrylate) (PCHPMA). The PLC is PET/0.6PHB where PET = poly(ethylene terephthalate), PHB = p-hydroxybenzoic acid and 0.6 is the mole fraction of the latter in the copolymer. The microstructure was studied by scanning electron microscopy (SEM). PCHEMA + PLC (20 wt% of the latter, blend E) has a fine texture with LC islands evenly distributed in the matrix and good adhesion between the phases resulting from their partial miscibility. The PCHPMA + PLC (20 wt% of the latter, blend P) shows only limited compatibility. The SEM results are confirmed by values of the glass transition temperatures Tg determined via thermal mechanical analysis. The Tg value of the blend E is shifted towards the Tg of PLC; Tg of blend P is practically equal to that of PCHPMA. The linear isobaric expansivity αL values for both blends are lower than the respective values for pure PCHPMA and PCHEMA. Thermal stabilities of the blends determined by thermogravimetry are also better than those of pure polymethacrylates. The temperature of 50% weight degradation for blend E is higher than that for pure PCHEMA by more than 60 K Copyright © 2004 Society of Chemical Industry  相似文献   
7.
A framework to validate and generate curved nodal high‐order meshes on Computer‐Aided Design (CAD) surfaces is presented. The proposed framework is of major interest to generate meshes suitable for thin‐shell and 3D finite element analysis with unstructured high‐order methods. First, we define a distortion (quality) measure for high‐order meshes on parameterized surfaces that we prove to be independent of the surface parameterization. Second, we derive a smoothing and untangling procedure based on the minimization of a regularization of the proposed distortion measure. The minimization is performed in terms of the parametric coordinates of the nodes to enforce that the nodes slide on the surfaces. Moreover, the proposed algorithm repairs invalid curved meshes (untangling), deals with arbitrary polynomial degrees (high‐order), and handles with low‐quality CAD parameterizations (independence of parameterization). Third, we use the optimization procedure to generate curved nodal high‐order surface meshes by means of an a posteriori approach. Given a linear mesh, we increase the polynomial degree of the elements, curve them to match the geometry, and optimize the location of the nodes to ensure mesh validity. Finally, we present several examples to demonstrate the features of the optimization procedure, and to illustrate the surface mesh generation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
This CT study was designed to assess brain morphology in agoraphobia. 21 patients and 21 normal control subjects matched in age and sex were investigated. Frontal and parietooccipital cortex, temporal cortex, lateral ventricles and third ventricle were evaluated by qualitative assessment on a 3-point scale (normal, questionable, abnormal). Patients showed significant bilateral enlargement of prefrontal cortical cerebrospinal fluid (CSF) spaces (p < .05). The rating "abnormal" was given to none (0%) of the normal controls, but to 6 (28.6%) of the patients in the left hemisphere, and to 4 patients (19%) in the right hemisphere, respectively. No qualitative differences were seen in the temporal cortex, lateral ventricles and third ventricle. These findings support the hypothesis that alterations in brain morphology are involved in the etiology of agoraphobia. The lack of a correlation between CSF enlargement and duration of illness suggests that prefrontal CSF enlargement is a neurobiological vulnerability marker in agoraphobia.  相似文献   
9.
Hollow bridge piers, particularly those built before the seventies, often have insufficient shear capacity due to inadequate transverse reinforcement details. Therefore, special attention must be given to this very important aspect when reinforced concrete (RC) piers with hollow sections are analysed and retrofitted. This paper covers the experimental analysis of retrofit solutions using CFRP sheets along the piers’ entire height to prevent shear failure. Experimental cyclic tests were carried out to evaluate the shear retrofit strategy efficiency on a set of RC piers with square hollow sections. This work also covers the study of design procedures for CFRP shear retrofitting and the evaluation of the associated ductility capacity improvement. The various transverse reinforcement detailing scenarios were assessed to determine their shear-failure prevention efficiency. The corresponding cyclic response behavior was also evaluated. The most relevant experimental information is presented in the paper, such as the evolution of the outer damage pattern. Finally, shear retrofit solutions, with a 40% increase over the maximum flexural force, show that this strategy is adequate to allow satisfactory ductility behavior.  相似文献   
10.
The development of technologically efficient anodes for water oxidation is crucial to improve hydrogen production via water splitting. Electrodes based on metallic active sites dispersed in carbon matrices have been shown to be an attractive way to attain this goal. However, challenges remain to prevent catalyst agglomeration that otherwise can result in a decrease of performance over time.In this work, we report an alternative and efficient method to produce nickel-nickel oxide nanoparticles-embedded in carbon nanofibers (Ni–NiO/C), by the solution blow spinning (SBS) process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show the carbon nanofibrillar matrix as a robust support, with well-dispersed nickel nanoparticles on the surface. The responses of the linear scanning voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy demonstrate how a small fraction of nickel on the fiber surface (≈1.2–5.3%) is enough to promote substantial improvement in performance (η = 278 and 309 mV vs RHE for 10 mA cm?2) and a significant turnover frequency (TOF) values of 1.38 (η = 278) and 1.30 s?1 (η = 309). These promising results are correlated with a large amount of Ni3+ present on the fiber surfaces, as identified by X-ray Photoelectron Spectroscopy (XPS). This work provides a low-cost and rapid preparation technique that can be extended for the manufacture of a wide variety of electrodes based on metals supported on carbon nanofibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号